
Subject: Re: allocate heap? yes or no?
Posted by marc schellens[1] on Mon, 17 May 2004 06:45:39 GMT
View Forum Message <> Reply to Message

> Here's a quick pointer question for the gurus in the group.
> When creating a new pointer, when is it appropriate or not appropriate
> to set the allocate_heap keyword? In a nutshell, could someone please
> summarize the issues that need to be considered. Are there downsides
> in terms of speed or extra commands that need to be considered. Is
> array size a consideration?

Internally, each pointer is a long integer, but IDL knows that these are
not to be treated like integers but are indices to a special data
structure, the "heap" (to keep is simple, think of it as a dynamic
array, ie. an array which can be resized (in real it is probabaly some
kind of tree) each single element of this heap can hold *any* IDL data
structure (arrays, structs, scalars...). If you create a pointer with
ptr_new() or ptrarr(), each of this pointers (long integers) is set to
0. (IDL knows, that heap index 0 cannot be dereferenced).

If you create a pointer with eg.:
p=ptr_new(10), the heap is extended by one element, and into this
element the integer 10 is stored.
And p itself is set to the index to the heap array (eg. 1 if it is the
first allocation)

if you do now:
q=ptr_new(dblarr(3,3,3)) again the heap is extended by one element and
in this elements a dblarr(3,3,3) is stored. (q is set to eg. 2)

If you do:
r=ptr_new(/ALLOCATE_HEAP) the heap is extended by one, but nothing is
stored there (ie. <Undefined>). (in our example, r is set to 3)

But later you can say:
*r=something
(*r is the heap element with index 'r')

for eg:
t=ptr_new()
(the heap is not extended yet)
you would have to say later:
t=ptr_new(something)

> I rely on pointers quite heavily these days. I just wish I knew more
> about the dos and don'ts.

Mainly you want to use ptr_new() and ptrarr() when you know, that each

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3394
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=19146&goto=39320#msg_39320
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=39320
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

of this poiters is set (allocated) and freed at a specific time.
(Eg. you want to read in 10 images of different size, at one point of
your program).

If the allocation of a pointer is variable (data or user input
dependent), and/or the pointer might be reset to another value later,
you are probably better of with ptr_new(/ALLOC).
Because for an allocated pointer you can check if it is already set
just with:
if n_elements(*p) ne 0 then ...

while for non allocated pointers you would have to check first if you
can dereference it:
if ptr_valid(p) then if n_elements(*p) then ...

HDH,
marc

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

