Subject: Re: Common block access in DLM
Posted by Rick Towler on Tue, 18 May 2004 17:36:45 GMT

View Forum Message <> Reply to Message

"Haje Korth" wrote...

> | have a routine that sets up coordinate transformations that are

> subsequently used by calls to other procedures in the DLM. Rather than

> calling this setup routine for every procedure call, it would be more

> eficcient to establish the transformation matrices, store them in an IDL

> common block, and access this common block over and over. However, this
> scenario requires to be able to create IDL common block from C and have
read

> and write access to it. Therefore my question: Does anybody know whether
it

> is possible to access an IDL common block from C in a DLM? If anyone could
> point me to the right functions in the IDL external API, | would be very

> thankful.

Hi Haje,
Sounds like you have something interesting brewing...

| can't tell you how to do it with common blocks but if | am reading you
correctly, you have a couple of other options:

Use a global variable in your DLM. If you need to access this on the IDL
side, then write your "init" function to return the transform back to IDL

too and keep a copy there. Simple, if not very elegant. The downside is
that you can only store one instance of your transform

| used to do this quite a bit but have since started creating little C++
classes to store this type of data so | could have multiple instances that
didn't clash. And when | mean little, | *mean* little:

class HajeTransform

{
public:

float transform[4][4];

|8

Then in your init function you set up your transform and return the pointer

Page 1 of 3 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2728
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=19203&goto=39443#msg_39443
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=39443
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

to your HajeTransform object back to IDL:

char *cptr;

IDL_MEMINT dims[1];

IDL_VPTR result;

HajeTransform *hTransform = new HajeTransform,;

/I do what you do to set up your transform
(*hTransform).transform[0][0] = <insert stuff here>

/I Return ptr to HajeTrans object back to IDL

dims[0] = sizeof(hTransform);

cptr = IDL_MakeTempArray(IDL_TYP_BYTE,1,dims,IDL_ARR_INI_NOP, &result);
memcpy(cptr, &hTransform, dims[0]);

return result;
This pointer will serve as your instance ID, all subsequent calls to your
DLM functions will require this ID so you can dereference the pointer and

access your object members.

Assuming your first argument is the pointer value:

HajeTransform *hTransform;

/I obtain the pointer to the HajeTransform object
IDL_ENSURE_ARRAY (argv[0]);

memcpy(&hTransform, argv[0]->value.arr->data, sizeof(hTransform));

/l Now you can access your HajeTransform object
(*hTransform).transform[0][0] =

You will need to add a cleanup routine to free your object when you are
done:

/l The SAFE_DELETE macro used in the function below is defined as:
#define SAFE_DELETE(p) {if(p) { delete (p); (p)=NULL; }}):

void IDL_CDECL HajeTransform_Cleanup(int argc, IDL_VPTR *argv)

Page 2 of 3 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

/*
Frees memory associated with the HajeTransform object.
*/

IDL_MEMINT dims[1];
HajeTransform *hTransform;

IDL_ENSURE_ARRAY (argv[0]);

dims[0] = sizeof(hTransform);
memcpy(&hTransform, argv[0]->value.arr->data, dims[0]);

SAFE_DELETE(hTransform);

}

The details of passing pointers back and forth has been covered before
(Nigel just posted on this subject again today). There have been other

posts regarding compiling C++ dims and Ronn's new version of his "Calling C
from IDL" now covers C++ too.

Hope this helps!

-Rick

Page 3 of 3 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

