Subject: Re: Complications with variance using FFTs Posted by Craig Markwardt on Tue, 20 Jul 2004 13:54:47 GMT View Forum Message <> Reply to Message

olde_english33@hotmail.com (Eric) writes:

>

- > Hello. First, I don't understand what you mean by "multiplied by
- > exp(-phi)? Secondly, consider the following code instead:

I mean, that for a real signal, the Fourier components at negative frequencies are the complex conjugate of those at positive frequencies. Thus, EXP(IMAG*PHI) at positive frequencies becomes EXP(-IMAG*PHI) at negative frequencies, for arbitrary PHI. Since you are not changing to the complex conjugate at negative frequencies, I think that's where your problem lies.

- > Now I think all the code snipets are related correctly. I checked the
- > the average variance of all the xf1[*,i] was equal to
- > sum(avgspec1)/31.0 and that the average variance of xf2[*,i] was equal
- > to sum(avgspec2)/31.0. This check held. It works if I don't throw in
- > the symmetric random phase exp(e). Does this phase throw off the
- > variance? Is there any way to account for inputting this random
- > phase?

Well, it's still worth investigating the original questions I posed...

Craig	
•	EMAIL: craigmnet@REMOVEcow.physics.wisc.edu Derivatives Remove "net" for better response