Subject: Re: Call_external and link libraries - SunOS
Posted by afl on Wed, 19 Apr 1995 07:00:00 GMT

View Forum Message <> Reply to Message

In article <1995Apr19.092214.22596 @rahman.earth.ox.ac.uk>, keith@earth.ox.ac.uk
(Keith Refson) writes:

|> I wonder if anyone can offer any suggestions on the following problem. |
|> am attempting to use CALL_EXTERNAL to interface to a FORTRAN

|> subroutine, using IDL 3.5 and Sun Fortran 1.4 running under SunOS
[>4.1.3_U1l. | have a C wrapper to pass the arguments to the FORTRAN.
|>

|> The problem is that the FORTRAN code makes calls to the math library
|> - simply the cosine function _Fcos. However when | build the

|> shared-object file, viz

[>

|> % cc -c -pic idl-link.c

|> % 77 -pic -c -O approx.f

|> % Id -0 approx.so -assert pure-text *.o /usr/lang/SC1.0/libF77.s0.1.4.1
[>

|> and call "approx.so"”, IDL crashes because the binary makes an

|> unsatisfied reference to _Fcos.

[>

|> Allright, _Fcos is in the math library /usr/lang/SC1.0/libm.a so |

|> should link *that* into assert.so just like | did with the FORTRAN

|> support library above. BUT in SunOS, there is only a static version

|> of this library! (ie no libm.so).

Keith,

Maybe you can explain this to me someday, but what | have
done (successfully under SOLARIS) is to link the static
libraries into my shared object! Huh? Yeah, that's what |
thought (and still do), but it works, and that is the

name of the game. If you figure out how/why, please let

me know. Here is an example | posted awhile back.

The first program is an IDL procedure. Note the compilation
and link statements that are executed using spawn.
Note also that | am using Solaris, and my libraries are in /usr/lib.

The second program is a simple FORTRAN program which uses numerous
mathematical intrinsic functions.

Good luck and let me know how it goes!

Andy Loughe

Page 1 of 6 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=810
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=2786&goto=4022#msg_4022
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=4022
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; Originator: Andrew F. Loughe

; *** SUN SOLARIS TEST ***

; Procedure to call a FORTRAN program from within IDL.

; The first 100 primes are computed in the FORTRAN program and
; passed into an IDL vector called prime_nums.

; We pass into the subroutine the number of primes desired.

; NOTE: A large number of "nonsense" function calls are made
: from within the FORTRAN subroutine in order to test

; that the link is robust. It found a problem with

; atan2 and datan2.

; **** Set these for yourself ****
DIR = '/bjer3/afl/lensemble/weights/src/idl/'
LIB_DIR = "/ust/lib/'

; This doesn't quite look like a shared object library!!
: May not need all three libraries, but for other tests | did need them.
compile =1
if (compile eq 1) then begin

SRC =DIR + 'primes.f '

OBJ =DIR + 'primes.o '

OUT =DIR + 'primes.so

LIB=LIB_DIR +'libV77.a '+ LIB DIR +'libF77.a '+ $

LIB_DIR + 'libsunmath.a'

spawn, 'f77 -c -Kpic ' + SRC
spawn, 'ld -G -0 '+ OUT + OBJ + LIB
endif

num_primes = 100L ; Want 100 primes.
prime_nums = lonarr(num_primes) ; Initialize the prime_nums vector.

; Call a FORTRAN program to do the computation.
a = CALL_EXTERNAL(DIR + 'primes.so’, ‘primes_', num_primes, prime_nums)

print, prime_nums(*)

end

C This routine accepts input from IDL's CALL_EXTERNAL Function.

C argc = The number of paramters being passed in from call_external
C argv = The vector of paramters being passed in from call_external

Subroutine primes(argc, argv) ! Called by IDL

Page 2 of 6 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Real argc, argv(*) I Argc and argv are reals

Integer num_expected
parameter (num_expected = 2) ! Number of parameters
I expected by programmer

C Obtain # of arguements passed-in and check that this is correct.
j = LOC(argc)
if (j .ne. num_expected) then
return
endif

C Call subroutine with two parameters passed in.
call primes1(%val(argv(l)), %val(argv(2)))

return
end

Originator: Andrew F. Loughe

*** SUN SOLARIS TEST ***

A rather simple, inefficient, poorly nested, quickly written,
subroutine (apology accepted?) to compute the first 100 primes.
It is used to demonstrate the ability of IDL to calla FORTRAN
subroutine to accomplish some task, accepting an input paramter,
and returning some values.

num_primes is passed into this subroutine from IDL.

NOTE:

Some nonsense function calls are added to see if our link is robust.
From this test | learned that atan2 and datan2 are symbols which
could not be found.

O0O0O0O0000000O00O00O0AN

subroutine primesl(num_primes, prime)
implicit none

integer i, j, icount, num_primes
integer prime(num_primes)
real r, r2

double precision d, d2

prime(1) = 2 I' By definition 1 is not prime.
prime(2) =3
prime(3) =5 I Simple method requires specification

Page 3 of 6 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

prime(4) =7 I of primes under 10.
icount =4

C Loop through a large number of integers.
C Return only "num_primes" primes.
do 100 i = prime(icount)+2, 1e8, 2

C Test for an even divisor.
do 200 j = 3, int(sqrt(float(i))), 2
if (mod(i,j) .eq. 0) goto 100 I Number not prime.
200 continue

C A prime has been found!
icount = icount + 1
prime(icount) =i
if (icount .gt. num_primes-1) goto 300 ! Only want num_primes

100 continue

C SOME NONSENSE FUNCTION CALLS:

C Sometimes a particular symbol is not found, so the CALL_EXTERNAL
C routine fails. Let's do some nonsense function calls to see if

C our link is robust. Sorry, not all FORTRAN functions are tested.

300 i=100
r = 100.
d = 100.
i = iabs(i)
r = abs(r)
d = dabs(d)
I = max0(i, 2)

r = amaxi1(r, 3.)
d = dmax1(d, d*d)

i =min0(i, 2)
r =aminl(r, 3.)
d = dmin1(d, d*d)

r = sqrt(r)
d = dsqgrt(d)

r = exp(r)
d = dexp(d)

Page 4 of 6 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

r = alog(abs(r))
d = dlog(dabs(d))

r = alog10(abs(r))
d = dlog10(dabs(d))

r = sin(r)
d = dsin(d)

r = cos(r)
d = dcos(d)

i =100
r=100.
d = 100.
r2=.5
d2= 5

r = tan(r)
d = dtan(d)

r = asin(r)
d = dasin(d)

r = acos(r)
d = dacos(d)

r = atan(r)
d = datan(d)

C COULD NOT FIND THESE SYMBOLS

C
C

r = atan2(r, r2)
d = datan2(d, d2)

r = sinh(r)
d = dsinh(d)

r = cosh(r)
d = dcosh(d)

r = tanh(r)
d = dtanh(d)

return
end

Page 5 of 6 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Andrew F. Loughe email: afl@cdc.noaa.gov
University of Colorado, CIRES voice: (303) 492-0707
Campus Box 449 fax: (303) 497-7013
Boulder, CO 80309-0449 USA

Page 6 of 6 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

