Subject: Re: problem converting FORTRAN to IDL Posted by rivers on Sat, 15 Apr 1995 07:00:00 GMT

View Forum Message <> Reply to Message

In article <3mlnpd\$qnd@reznor.larc.nasa.gov>, zawodny@arbd0.larc.nasa.gov (Joseph M Zawodny) writes:

- > In article <D6zHn2.LyF@ireq.hydro.qc.ca> brooker@toka.ireq-ccfm.hydro.qc.ca writes:
- >> This is an observation I have just made about IDL.
- >>
- >> When you compile a FORTRAN program, you can specify G_floating
- >> implementations of REAL*8. This extends the range of numbers to +-0.56D308.
- >> (For default D floating, the maximum number allowed is 0.29D38.)

>>

- >> On the other hand, IDL has no option for the larger G_floating numbers. This
- >> makes for problems when you convert a "G_floating REAL*8 " FORTRAN program to
- >> IDL.
- >>
- >> Peter Brooker

>

> Gee, maybe I do not understand your problem, but I did this quick test.

>

- > IDL> a=.5d308
- > IDL> print,a
- > 5.0000000e+307

>

- > Therefor you should be able to use the IDL DOUBLE to implement FORTRAN
- > G_floating calculations.

I belive the original post was probably referring to a DEC Alpha machine. On the Alpha one can compile double precision code to be D_FLOAT, G_FLOAT or IEEE_FLOAT. The default for the DEC C compiler is G_FLOAT. IDL is clearly compiled with D_FLOAT, presumably so that the Alpha version is compatible with old VAX binary files, where D_FLOAT is the default. It would be possible and perhaps nice if RSI would provide 3 different versions (D_FLOAT, G_FLOAT and IEEE_FLOAT) of IDL for the Alpha platform. If you use CALL_EXTERNAL on the Alpha you need to make sure any routines you call are compiled with the same floating point format used for IDL.

Mark Rivers (312) 702-2279 (office)
CARS (312) 702-9951 (secretary)
Univ. of Chicago (312) 702-5454 (FAX)
5640 S. Ellis Ave. (708) 922-0499 (home)

Chicago, IL 60637 rivers@cars3.uchicago.edu (Internet)