
Subject: OO IDL
Posted by Robert Barnett on Thu, 16 Sep 2004 00:23:55 GMT
View Forum Message <> Reply to Message

I'm curious about common ways to call differing versions of code. I have 
implemented OO (Object Oriented) IDL to achieve this common task and 
wanted to know what peoples thoughts might be.

I have several routines, each which have many different versions. In 
many cases, no version is any more recent than any other. It's more that 
each version is applicable for different problems.

The programs are in their own .pro files, with the filename and function 
name being the same so that autoloading works. They are also in 
lowercase so that autoloading works correctly. The version is just 
appended onto the end like so:

cost_function_mem.pro
cost_function_lb.pro
cost_function_sr.pro
...

simplex_fast.pro
simplex_slow.pro
...

... and on it goes

This means that I have to do lots of calls to CALL_FUNCTION becuase I 
only know what version I am to use at runtime.

I'm having a play around with OO IDL and seeing if there is a way to do 
this without using CALL_FUNCTION, and seeing if there are any advantages 
in doing so.

The only way I can see to avoid the use of CALL_FUNCTION is to create a 
class for each function.

mem::cost_function
lb::cost_function
sr::cost_function
...

fast::simplex
slow::simplex
...

It is now possible to call a cost function like so:

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5061
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=19889&goto=41041#msg_41041
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=41041
http://idlcoyote.com/comp.lang.idl-pvwave/index.php


cf -> cost_function()
Where cf could be
cf = obj_new('mem')
cf = obj_new('lb')
cf = obj_new('sr')

Unfortunatley, this causes a maintainence issue with structures. I now 
also need to define
mem__define
lb__define
sr__define
fast__define
slow__define
However, is it easy to write a trivial shell or perl script for 
generating these.

It seems that both OO and CALL_FUNCTION require the same number of lines 
of code aside from the maintainence of the OO structures.

Some advantages of OO may be
* The ability for objects to inherit each other, thus being able to use 
each others methods.
* Each class has its own namespace, ensuring that all methods which are 
not in conflict with other versions
* Each class could have instance data, thus saving effort in passing 
information down the call stack and back again.

Disadvantages
* It may not be entirely obvious where instance data comes from
* It may not be entirely obvious which objects inherit each other
* A change in class struct definitions requires IDL to restart.

The advantages of OO, although desirable don't seem to have a huge 
impact. Makes me wonder if anyone has an IDL OO success story.

-- 

nrb@ 
Robbie Barnett
imag 
Research Assistant
wsahs 
Nuclear Medicine & Ultrasound
nsw 
Westmead Hospital
gov 
Sydney Australia
au 

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php


+61 2 9845 7223

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

