Subject: Re: Faster way ?
Posted by JD Smith on Tue, 28 Sep 2004 15:49:36 GMT

View Forum Message <> Reply to Message

On Mon, 27 Sep 2004 20:46:14 +0000, Dick Jackson wrote:

>

> "Craig Markwardt" <craigmnet@REMOVEcow.physics.wisc.edu> wrote in message
> news:onr7onip35.fsf@cow.physics.wisc.edu...

>> rats@mail.geog.uvic.ca (Rafael Loos) writes:

>>> Hi, | am trying to find the number of values that are within a range

>>>

>>> | have an Array that has 3 columns and 5 millions lines. Thats what |
>>> am doing ...

>>>

>>> number = WHERE((Array[1,*] GE Min) AND (Array[1,*] LE Max), geralX)
>>>

>>> | am storing the number inside the variable geralX ... It is taking

>>> (.23 seconds ... but | want to know if there is a faster way to find

>>> that ...

>>

>> |f you are doing this many times in a loop and ARRAY is unchanging, it
>> may be worth extracting ARRAY|[1,*] into its own variable. That way, you
>> will save the time of extracting each iteration.

>>

>> [f you just want the total number of elements that match your filter,

>> you can use total, as in:

>>

> filter = (Array[1,*] GE Min) AND (Array[1,*] LE Max) geralX =

> total(filter)

\Y

vV V

Even with the two uses of Array[1,*], | got 30-40% time reduction with
this:

arrayl = Array[1,*]
number = WHERE((Arrayl GE Min) AND (Arrayl LE Max), geralX)

... and then splicing in your method gave a total of about 45% time
reduction:

arrayl = Array[1,*]
geralX = Total((Arrayl GE Min) AND (Arrayl LE Max))

VVVVVVVYVVYVYVYV

It may not be directly relevant to this problem, but if you only care
about whether *any* values match the filter (i.e. geralX gt 0) then you
can use:

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=19957&goto=41161#msg_41161
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=41161
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

geralX = ~array_equal((Arrayl GE MinVal) AND (Arrayl LE MaxVal),0b)

which offers some slight gains (though not as much as you'd think:
most the time is spent on the comparison operations). By the way,
it's not fair to precomute min/max for HISTOGRAM outside of the time
accounting. When you move it back in, | get:

Orginal Method (msec) 651.46804
Histogram Method (msec) 87.692976
Where Method (msec) 211.58504
Total Method (msec) 95.319033
Array_Equal method (msec) 86.041927

which depends somewhat on how quickly ARRAY_EQUAL finds a
non-complying value (and can therefore abort). Another testament to
the heavy internal optimization of HISTOGRAM.

JD

Page 2 of 2 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

