Subject: Re: Faster way ?
Posted by btt on Mon, 27 Sep 2004 21:12:56 GMT

View Forum Message <> Reply to Message

Dick Jackson wrote:

> "Craig Markwardt" <craigmnet@REMOVEcow.physics.wisc.edu> wrote in message
> news:onr7onip35.fsf@cow.physics.wisc.edu...

>

>> rats@mail.geog.uvic.ca (Rafael Loos) writes:

>>

>>> Hi, | am trying to find the number of values that are within a range
>>> .

>>> | have an Array that has 3 columns and 5 millions lines.

>>> Thats what | am doing ...

>>>

>>> number = WHERE((Array[1,*] GE Min) AND (Array[1,*] LE Max), geralX)
>>>

>>> | am storing the number inside the variable geralX ...

>>> |t is taking 0.23 seconds ... but | want to know if there is a faster

>>> way to find that ...

>>

>> |f you are doing this many times in a loop and ARRAY is unchanging, it
>> may be worth extracting ARRAY[1,*] into its own variable. That way,
>> you will save the time of extracting each iteration.

>>

>> |f you just want the total number of elements that match your filter,

>> you can use total, as in:

>>

>> filter = (Array[1,*] GE Min) AND (Array[1,*] LE Max)

>> geralX = total(filter)

>

>

> Even with the two uses of Array[1,*], | got 30-40% time reduction with this:
>

> arrayl = Array[1,*]

> number = WHERE((Arrayl GE Min) AND (Arrayl LE Max), geralX)
>

> ... and then splicing in your method gave a total of about 45% time
> reduction:

>

> arrayl = Array[1,*]

> geralX = Total((Arrayl GE Min) AND (Arrayl LE Max))

>

Hello,

You know, if your data is composed of integers, then you canuse histogram pretty
effectively (unless you expect to need a gazillion bins.) The steps below give

Page 1 of 3 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3738
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=19957&goto=41171#msg_41171
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=41171
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

the following results...

Orginal Method (msec) 656.23403
Histogram Method (msec) 29.270887
Where Method (msec) 180.91989
Total Method (msec) 57.934046

As a bonus, you can use the REVERSE_INDICES keyword to get the locations of
these values that fit your criteria. | suppose you could do this with floats,

but then you have to fuss with where the bin locations start and how wide they
are. But, | suppose if you do have floating decimal data but your cutoffs are
fairly coarse, you could pull a fast one by bumping them up a could of orders of
magnitude and then converting to integers.

For example, if your cutoffs are known to the second decimal place then maybe...

bumpedarray = LONG(array * 100)
bumpedMin = LONG(minVal * 100)
bumpedMax = LONG(maxVal * 100)

Now the histogram function might be handy (again, depends on what you data are
like.)

Ben

rxk BEGIN HERE
array = LONG(RANDOMN(seed, 3, 5000000L))

arrayl = Array[1,*]

bottom = MIN(arrayl, max = TOP)
minVal = -2L

maxval = 2L

t0 = systime(/sec)
number = WHERE((Array[1,*] GE MinVal) AND (Array[1,*] LE MaxVal), geralX)
print, '‘Orginal Method (msec)’, 1000*(systime(/sec) - t0)

t0 = systime(/sec)

h = HISTOGRAM(arrayl,min = bottom, max = top, location = loc)
a = where(loc GE minval AND loc LE maxval, cnt)

if cnt GT O then geralX = TOTAL(H[A]) else geralX =0

print, 'Histogram Method (msec)', 1000*(systime(/sec) - t0)

t0 = systime(/sec)
geralX = Total((Arrayl GE MinVal) AND (Arrayl LE MaxVal))
number = WHERE((Arrayl GE Minval) AND (Arrayl LE MaxVal), geralX)

Page 2 of 3 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

print, 'Where Method (msec)', 1000*(systime(/sec) - t0)
t0 = systime(/sec)

geralX = Total((Arrayl GE MinVal) AND (Arrayl LE MaxVal))
print, 'Total Method (msec)', 1000*(systime(/sec) - t0)

*ex+E NI HERE

Page 3 of 3 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

