Subject: Re: equally spaced points on a hypersphere? Posted by Matt Feinstein on Fri, 29 Oct 2004 15:16:42 GMT View Forum Message <> Reply to Message

On 29 Oct 2004 07:51:58 -0700, robert.dimeo@nist.gov (Rob Dimeo) wrote:

> Hi,

>

- > I would like to create (n+1) equidistant points on an n-dimensional
- > sphere. The initial information provided is the center of the sphere,
- > the radius, and *any* point on the sphere. From that you need to find
- > the coordinates for the remaining n points. As a simple example,
- > three equidistant points on a 2-dimensional sphere (a circle), can be
- > located 120 degrees apart. Any hints on how to do this in general for
- > n-dimensions?

Unfortunately, when you go to dimension greater than two, there are constraints on the number of 'equidistant' points you can have on a sphere. For example, in 3-D, there are (only) five regular polyhedra, so n can only have the values 4, 6, 8, 12, and 20 for a tetrahedron, octahedron, cube, icosahedron, and dodecahedron.

Matt Feinstein

--

There is no virtue in believing something that can be proved to be true.