Subject: Re: What about real polymorphism ??
Posted by JD Smith on Fri, 10 Dec 2004 16:00:58 GMT

View Forum Message <> Reply to Message

On Thu, 2004-12-09 at 13:52 -0700, David Fanning wrote:

>
>
>>
>>
>>

VVVVVVVVVVVVVVVVVYVYVVYVYVYVYVYV

Th

Michael Wallace writes:

Quite a thread you guys have here. Anyway, | can't speak for objects in
IDL since | haven't actually learned how to use them yet, although |
keep planning to. | know exactly what Antonio is saying, so I'm going
to try and give another example of how things work in Java. Maybe
seeing this will help you IDL folks to better understand the Java side

of the question. I'm going to be using Java code in my example, so |
hope you can follow it. ;-)

Thank you for trying to shed light on this, Michael.
| can read your code well enough. What | can't follow
is why Antonio thinks this can't be done in IDL. :-)

Let me give you an example | use every day in IDL and
see if this isn't exactly the flavor of your example.

| have a draw widget object. | tell the object to

"draw itself" by calling its DRAW method. The draw
method does nothing more than call the DRAW methods
of any objects that happen to be in the draw widget's
container. That is to say, the draw widget object NEVER
knows what it is drawing! If | want something displayed

in the window, | just give it a DRAW method and plop it
into the Draw widget, which can always display it. It
doesn't have to know anything whatsoever about what kind
of objects populate its container.

So, in Antonio's case, if he wants to treat his MEN

and WOMEN objects as "people”, the more power to him.
Anyone who interacts with one of his "people"” is going

to find the proper method called without him having to

do anything extra about it. That seems like perfect
polymorphism to me. :-)

e confusion here is common for people coming from strictly typed

languages like C++ and Java, for which you must always pre-declare the
class (or common superclass) of objects you are using (e.g. the "Shape"
object from Michael's example), and, at least in some languages, go
specifically out of your way to get what | consider true poly-morphis

(e.

g. by using the "virtual" statement in C++).

Since IDL is entirely type agnostic, and doesn't require any pre-

Pag

el of 2 ---- CGenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=20287&goto=41955#msg_41955
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=41955
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

declarations in code which uses objects, *everything* is completely
poly-morphic, i.e. all methods are pure virtual methods (which is one of
the reasons the OO system of IDL is somewhat slower for many objects
than others). You never need to know anything about the class of an
individual object: it's up to the caller to ensure that it passes

objects of classes which implement the methods to be called: the
compiler will never complain if | compile a statement like this:

function obj_do,obj
result=obj->SomeFunkyMethod(12)
return,result

end

This is perfectly valid code, to which the compiler can find no

objection. It doesn't know what "obj" is or is going to be, and it just

hopes that the caller will pass a true object (instead of say the string
"squirrel”, or the value IPI), and further more an object which

implements a SomeFunkyMethod function-method. This is the simultaneous
joy and pain of type-free languages: the freedom to skip all those

tedious type declarations, but the trouble that can get you into for

large projects.

To reiterate, all method invocations are computed at run-time and not
compile-time. This is similar to languages like Smalltalk, or

Objective-C, but is fairly foreign to people used to working with type-
driven OOP languages. It's entirely analogous to the non-existent type
enforcement IDL provides for regular variables, but somehow this is less
confusing for people than the typeless class analog.

All this is not to say that IDL OO paradigm is a perfect implementation.
The method invocation speed is *slow?*, yet data encapsulation amounts to
"see no instance data”, so you tend to cache pieces of information about
objects for speed reasons, which *breaks* encapsulation, and furthermore
leads to out-of-sync problems. There are no static or class variables,

and no class methods, so you often finding yourself doing awkward things
like:

dummy=obj_new('someclass’)
new=dummy->Read(file)
obj_destroy,dummy

when a class method would have been much more natural. There is no
generic way to refer to super-classes, which breaks method-chaining if
you ever decide to substitute a different super-class, etc. But poly-
morphism... that it does well.

JD

Page 2 of 2 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

