
Subject: Re: Common blocks
Posted by chase on Fri, 05 May 1995 07:00:00 GMT
View Forum Message <> Reply to Message

>>>> > "Phil" == Phil <phil@peace.med.ohio-state.edu> writes:
In article <PHIL.95May2201303@peace.med.ohio-state.edu> phil@peace.med.ohio-state.edu
(Phil) writes:

Phil> In article <D7z1G2.5JI@midway.uchicago.edu> rivers@cars3.uchicago.edu (Mark Rivers)
writes:

Phil> Like trying to compile other functions/pros that use the said variables!

A common block that is declared at the main level is not within the
scope of compiled procedures or functions unless it is declared within
those procedures or functions. If a common block is declared within a
procedure/function then variable name conflict can be avoided simply
by giving unique names for each variable in the common block
definition for that routine. (A new IDL behavior for common blocks is
that when no variable names are given the variables assume the names
of those used in the first compiled procedure or function to define
the common block).

In regards to one of the earlier posts, once a common block is
declared at the main level I do not believe that it can be removed.

I find that common blocks are very handy for implementing a scope for
global variables. In contrast, system variables are not limited in
their global scope.

I have found many benefits by using a single variable in my common
blocks. This variable is an anonymous structure. In the fields of
this structure I put all the variables that would normally be placed
individually in the common block. This has two advantages:

1) The structure can be redefined. For example, additional fields can
 be added to the structure. IDL does not let you redefine the
 number of elements in a common block within the life of the IDL
 session. To change the common block one has to restart IDL.
 Redefining the structure does not require restarting IDL.
 Additionally, I can add additional fields to the structure without
 affecting the older routines that access (but do not rewrite)
 previously defined fields in this structure. Sometimes this avoids
 having to edit alot of procedures.

2) This structure as a global variable helps to avoid namespace
 conflicts with other variables that might otherwise occur if the

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=283
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=2259&goto=4199#msg_4199
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=4199
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 fields had instead been declared as individual variables in the
 common block. This benefit is similar to C++ class static
 variables and modules in other languages.

The disadvantage of this method is when storing very large variable
arrays in the structure fields. IDL does not have the ability of
taking the address of fields or subarrarys. This means that any field
or subarray expression must copy the data. This may be undesirable in
certain circumstances. Because of this, I was forced in one
particular program to use an additional variable in the common block
to hold an extremely large array.

In general, when global variables are needed I have found a single
structure in a common block useful because of the above benefits.

Chris Chase

--
===============================
Bldg 24-E188
The Applied Physics Laboratory
The Johns Hopkins University
Laurel, MD 20723-6099
(301)953-6000 x8529
chris.chase@jhuapl.edu

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

