Subject: Re: _extra and call_method
Posted by btt on Tue, 01 Feb 2005 15:18:25 GMT

View Forum Message <> Reply to Message

David Fanning wrote:

> Ben Tupper writes:

>

>

>> |I'm running on just one cup of coffee this morning so maybe this is a fuzzy
>> question: could you explain the circumstances in which this is useful? If you
>> return dummy named structure - well, what about all the work that goes into
>> populating its properties it via the INIT function? Or is this for simple data
>> structures (ala widget event structures, etc. ?)

Since objects are implemented as hamed structures in IDL,

| seem to find a number of instances where it would be

helpful to know what the names of the fields in that object
structure are. For example, one of the hugely time-consuming
tasks in object writing is creating the GetProperty and SetProperty
methods that allow you to manipulate and set/get values in the
object structure. Wouldn't it be nice to automate those tasks

and be able to get and set any property (field) in the object
without necessarily knowing ahead of time what those properties
might be? For example, | might like to respond to this:

anObject -> SetProperty, Foo=5
Without specifically having to define the FOO keyword for the object.

If FOO were a field of this object, | could write a generic SetProperty
method like this (I'm leaving out a couple of important details, but |
plan an article soon):

PRO myObject::SetProperty, Extra=extra

; What keywords are you looking for?
keywords = Tag_Names(_extra)

; What properties (fields) can be changed?
Call_Procedure, Obj_Class(self) +' _define', struct ;** ¥kt
properties = Tag_Names(struct)

; Set the value of each field according to the keyword value.

FOR j=0,N_Elements(keywords)-1 DO
propertylndex = Where(StrPos(properties, keywords[j]) EQ 0, match)
IF match EQ 1 THEN self.(propertylndex) = _extra.(j)

ENDFOR

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVYVYVYVYV

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3738
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=20463&goto=42328#msg_42328
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=42328
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

END

| can do something similar for a GetProperty method. Adding (copying,
really) these two generic methods to every object | create, is MUCH
less time consuming than defining each and every keyword for each
and every property | hope to change.

VVVVYVYVYVYV

Hi again,

Just got to thinking on this some more. Here's one item | thought you might be
willing to share your thoughts on: in the case of multiple inheritances does
each keyword get checked in for each generation of inheritance and if they do,
does it matter?

For example...

PRO APPENDAGE__DEFINE, class
class = {APPENDAGE, isJointed:0}
END

PRO LEG__ DEFINE, class

class = {ARM, INHERITS APPENDAGE, hasOpposingThumb: 0}
END

So, if | use the generic keyword checking for LEG does "isJointed" get checked
twice? Propbably it doesn't matter a hoot if they do get checked twice.

PRO LEG::SetProperty, EXTRA = extra
... do that neat keyword checking thing here ...

self->APPENDAGE::SetProperty, Extra = extra
END

Cheers,
Ben

Page 2 of 2 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

