
Subject: Re: Array Concatenation Optimization
Posted by Peter Mason on Tue, 08 Feb 2005 22:18:24 GMT
View Forum Message <> Reply to Message

Ken Mankoff wrote:
> I've read JD's tutorial
> [http://www.dfanning.com/tips/array_concatenation.html] a few times,
> but cannot get my array juggling as fast as I would like it...
>
> I'm converting an 8 bit image to 24 bit RGB. Why? Well, long story,
> but I am stuck in the Z buffer and need to make nice anti-aliased
> color images. So everything is 3x as large&thick, converted to RGB,
> and then rebined...
>
> The conversion to RGB is currently one of the bottlenecks in my
> code, and I would like to speed it up. I am using this function:
>
> function toRGB, r,g,b, image
> s = size(image,/dim)
> image_rgb = bytarr(3, s[0], s[1])
> image_rgb[0, *, *] = r[image]
> image_rgb[1, *, *] = g[image]
> image_rgb[2, *, *] = b[image]
> return, image_rgb
> end
>
> I can cut the execution time in half if I change the entire function
> to this one line:
>
> return, [[[r[image]]],[[g[image]]],[[b[image]]]]
>
> But now it is [n,m,3], and the WRITE_PNG procedure needs it to be
> [3,n,m], and wrapping a TRANSPOSE() around that 1 line makes it go
> from 2x as fast to 7x as slow as the original function.
>
> I don't get any improvement if I change the * to explicit ranges,
> although I remember reading that this should make array insertions
> faster....
>
> image_rgb[0, 0:s[0]-1, 0:s[1]-1] = r[image]
>
> Another trick I have read about is to use the TEMPORARY() function,
> but I don't think it is applicable in this case.
>
> Any other suggestions?
>
> Thanks,
>

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1501
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=20525&goto=42487#msg_42487
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=42487
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> Ken Mankoff
> http://edgcm.org/
> http://spacebit.dyndns.org/

Interesting. What platform are you using? I ran a little test program
(included below) on an "un-hyperthreaded" P4 Windows2000 laptop. I got the
following times for N=2048 (a square, 2048*2048 image):
Method 1 (traditional): 0.30 (IDL6.1), 0.30 (IDL6.0), 0.74 (IDL5.5)
Method 2 (transpose): 0.26 (IDL6.1), 0.27 (IDL6.0), 0.43 (IDL5.5)
Method 3 (insertion): 0.57 (IDL6.1), 0.57 (IDL6.0), 0.76 (IDL5.5)
Method 4 (steam power): 6.21 (IDL6.1), 6.40 (IDL6.0), 6.64 (IDL5.5)

I must admit that I was surprised by these results. I would have thought
that method 3 would be much faster than method 1. So much for the "never
use an * subscript on the LHS of an assignment if you can help it" rule that
I cherish. I can't explain it. Evidently RSI has put some work into this
since IDL5.5, though.
Curiously, the transpose method performed the best on my platform.
I included method 4 because it *might* perform better than the others if you
were to code something like it in C.

Cheers
Peter Mason

;Test program
pro qad_rgbload
 ;
 n=2048L
 r=bindgen(256)
 g=r+64b
 b=g+64b
 img=bytscl(dist(n,n))
 rgb=bytarr(3,n,n)
 ;
 ; Method 1
 t0=systime(1)
 rgb[0,*,*]=r[img]
 rgb[1,*,*]=g[img]
 rgb[2,*,*]=b[img]
 print,systime(1)-t0
 ;
 ; Method 2
 t0=systime(1)
 rgb[0]=transpose([[[r[img]]],[[g[img]]],[[b[img]]]], [2,0,1])
 print,systime(1)-t0
 ;

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 ; Method 3
 img=reform(img,1,n,n,/overw)
 t0=systime(1)
 rgb[0,0,0]=r[img]
 rgb[1,0,0]=g[img]
 rgb[2,0,0]=b[img]
 print,systime(1)-t0
 ;
 ; Method 4
 img=reform(img,n,n,/overw)
 t0=systime(1)
 n1=n-1L
 for i=0L,n1 do begin
 for j=0L,n1 do begin
 k=img[i,j]
 rgb[0,i,j]=r[k]
 rgb[1,i,j]=g[k]
 rgb[2,i,j]=b[k]
 endfor
 endfor
 print,systime(1)-t0
 return
end

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

