
Subject: Re: vector layer comparison in IDL
Posted by Mark Hadfield on Thu, 03 Mar 2005 21:08:10 GMT
View Forum Message <> Reply to Message

yp wrote:
> Mark Hadfield wrote:
>> Are you interested, perhaps, in the maximum distance between
>> the two "coastlines"?
>
> You guessed it right. I got to calculate the absolute error
 > (distance) assuming that one is *true* and the other is
 > *estimated* from other sources.

Ok, so we have 2 polylines, the "true" one defined by vectors
xt and yt, both dimensioned [n], and the "estimated" one
defined by vectors xe and ye, both dimensioned [m]. We want to
calculate the maximum distance of the "estimated polyline" from
the "true" one. Here's a naive approach:

dmax = 0.
for i=0,m-1 do begin
 for j=1,n-1 do begin
 d = magic_distance_function(xe[i], ye[i], $
 xt[j-1], yt[j-1], xt[j], yt[j])
 if j eq 1 then dmin = d else dim = dmin < d
 endfor
 dmax = dmax > dmin
endfor

(I think I've got the logic right there. We're looping through the
"estimated" vertices, for each one calculating the distance to the
closest line segment on the "true" polyline.)

Now you might object that this solution is a little vague in the line
where magic_distance_function is invoked. That's a good point. So here's
an attempt at this function

function magic_distance_function, x, y, x0, y0, x1, y1

 compile_opt DEFINT32
 compile_opt STRICTARR
 compile_opt STRICTARRSUBS
 compile_opt LOGICAL_PREDICATE

 d0 = sqrt((x-x0)^2+(y-y0)^2)
 d1 = sqrt((x-x1)^2+(y-y1)^2)
 dp = 2.0*poly_area([x,x0,x1],[y,y0,y1]) / $
 sqrt((x1-x0)^2+(y1-y0)^2)

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1027
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=20612&goto=42862#msg_42862
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=42862
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 return, dp > (d0 < d1)

end

This uses three relevant distances between point [x,y] and line segment
[x0,y0] -> [x1,y1]. D0 and d1 are distances to the end points; dp is the
perpendicular distance between [x,y] and the line through [x0,y0] &
[x1,y1], extending the line as far as necessary. I'm too lazy to look up
the expression for perpendicular distance, so I've taken advantage of
the relationship between this distance and the area of the triangle
formed by the 3 points, calculated by IDL function POLY_AREA.

Applying this to the surface of the earth is left as an exercise, as is
testing.

You might want to think about the case where the "estimated" polyline
follows the "true" polyline closely, but has extra vertices at one end
or other. The above algorithm sees this as an error.

--
Mark Hadfield "Ka puwaha te tai nei, Hoea tatou"
m.hadfield@niwa.co.nz
National Institute for Water and Atmospheric Research (NIWA)

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

