Subject: Re: interpolation in 5 dimensional space (how and speed)
Posted by Chris Lee on Thu, 05 May 2005 08:46:06 GMT

View Forum Message <> Reply to Message

In article <1115247557.742714.266820@0139g2000cwo.googlegroups.com>,
"pdeyoung" <deyoung@hope.edu> wrote:

We have a project where we track a large number of test particles
through a magnetic field. Then using the ending variables (five) we
want to infer the starting parameters for real particles by comparing
them to the nearest test particles. (Please don't laugh at my efforts
below - | really don't know the correct way to do this.) In some sense
the one dimensional analogy would be to have a y value and find the x
values given that you could calculate the y's from a grid of x values
ahead of time. Of course in the one-d example there is no assurance
that the y's will be equally spaced. Similarly, in the code below the
results of the tracks are not equally spaced in output space. (In the
code below for simplicity while testing, | just use random arrays.) For
background, | found the closest point in each "quadrant” and then found
a weighted average based on the distance from the test point and the
closest points. (This could be totally bogus.) Anyway, is there a

better (and faster) way to do this or is this approach reasonable. If

S0, is there a way to do it faster. Ultimately we will have to do this

1076 times for the real data set. | am using IDL6.1 Thanks in advance.
Paul DeYoung

deyoung@hope.edu

VVVVVVVVYVVVVVVVYVYVYVYV

Are you really trying to do a 5D 'bi-cubic’ interpolation here?
Does it actually work? Save yourself a headache and put all
of the points into an array, the sooner you do this, the
better the code will scale/vectorize. e.g.

min_array=[min_dist_1, min_dist_2...., min_dist_32]
guad_array=[quadl(indexl), quad2(index2)....quad32(index32)]

indices=array_indices(ranarray_1, quad_array)
sqrt_min_array=sqrt(min_array)
weight=total(1/sqrt_min_array)

xinterp=total(indices[0,*]/sqrt_min_array)/weight

it might not speed it up, but it's shorter and easier to read. And when
you vectorize the input then it should be easier/possible to vectorize
interpolate. It's this vectorizing (in particle number) which will get
you the biggest boost.

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4772
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=21015&goto=43866#msg_43866
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=43866
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Where did the equation for the interpolation come from? Have a look at
what IDL does in INTERPOLATE, it might be different.

Chris.

Page 2 of 2 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

