
Subject: Re: Looping over parameters without EXECUTE()
Posted by Thomas Pfaff on Tue, 03 May 2005 13:43:33 GMT
View Forum Message <> Reply to Message

JD Smith schrieb:
> On Mon, 02 May 2005 12:10:43 -0400, Wayne Landsman wrote:
>
>
>> The one case where I haven't figured out how to remove EXECUTE() from a
>> program (to allow use with the Virtual Machine) is where one wants to
>> loop over supplied parameters. For example, to apply the procedure
>> 'myproc' to each supplied parameter (which may have different data
>> types) one can use EXECUTE() to write each parameter to a temporary
>> variable:
>>
>> **
>>
>> pro doit,p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11
>>
>> ;Loop over input parameters
>> Np = N_params()
>> colname = 'p' + strtrim(indgen(Np)+1,2)
>>
>> for i=0,Np-1 do begin
>> result = execute('p=' + colname[i])
>> myproc,p
>> endfor
>> **
>> Is there a way to avoid EXECUTE() here -- say to identify the 4th
>> parameter as e.g., $4 ? Of course, one can always avoid the loop and
>> explicitly write out the call for each parameter:
>>
>> myproc,p1
>> myproc,p2
>>
>> but this probably becomes unreasonable at around 20 parameters.
>>
>> One solution is to have the program read an array of pointers rather
>> than multiple parameters. But this has the disadvantages of losing
>> backwards compatibility, as well as making the program somewhat more
>> complicated to use. My current default solution is to make a pointer
>> keyword available and say that data must be passed this way instead of
>> via parameters, if the user wants to use the VM.
>>
>> Thanks, --Wayne
>
>
>

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5371
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=20984&goto=43944#msg_43944
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=43944
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> I use a big cascading SWITCH statement which I generate with a little
> perl script. It works well when you are accumulating things based on
> the arguments:
>
> switch n_params() of
> 10: print,v10
> 9: print,v9
> ...
> 1: print,v1
> 0: break
> else: message,'No more than 10 params allowed'
> endswitch
>
> It will cascade through all existing parameters, and can be used to
> accumulate the arguments as well. But for long argument lists, it
> stands out in your code like a sore thumb.
>
> Here's another thought: why not use a set of convenience routines to
> grab all parameters and package them into an appropriately sized pointer
> list for the internal consumption of the routine, so that you could
> shield the user from the pointer symantics, but not have to deal with
> all those case/switch statements? Also, we want arbitrary input/output
> options for each variable.
>
> A similar cascading switch with incremented pointer assignment should
> work. However, that would still leave large explicit v1,v2,v3,...,v50
> lists and big switch statements lying around in your code like some sad
> FORTRAN port. Ugly and hard to manage. So, let's say you really want
> to class this up, and keep your code neat and clean, with nary a vXXX in
> site. How about something as simple as this:
>
> pro test_args,$
> @package_args_list
>
> @package_args
>
> for i=0,n_elements(args)-1 do $
> *args[i]=42*randomu(sd)
>
> @unpackage_args
> end
>
> Have a look at:
>
> turtle.as.arizona.edu/idl/package_args
>
> for the code.
>

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> It looks complicated, but basically just uses @batch import to hide the
> semantics of converting between a long list of arguments and a list of
> pointers, and back again. It checks for valid arguments (availing
> itself of the "check your assumptions" trick at the end of
> http://www.dfanning.com/tips/keyword_check.html), puts them on a pointer
> list without copying the data, lets you operate on that list
> (read/write), and then unpacks the pointers back onto the passed
> variable (using TEMPORARY to save memory copying) and finally frees the
> intermediary argument pointer array. I have it set up for a maximum of
> 51 arguments, but it could easily be expanded.
>
> Is this IDL's version of loop unrolling? I think so.
>
> JD
>
> P.S. Reimar's SCOPE_VARFETCH method is nice, but requires v6.1, and also
> requires you to test each incoming variable explicitly to see if it was
> set. It also would be very cumbersome to *store* values in the passed
> arguments (though it can be done). On the other hand, my method can
> leave pointer data around if you have an error and don't explicitly
> CATCH it.
>

How about putting all those parameters into a (named or anonymous)
struct? Then you can have different types for each parameter and you're
still able to loop over the elements.

pro doit, param_struct
 for i=0, n_tags(param_struct) -1 do begin
 arg = param_struct.(i) ;->this way you can even store result values
 myproc, arg
 param_struct.(i) = arg
 endfor
end

Would that be a possibility, or am I missing something?

Cheers,

Thomas

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

