
Subject: Re: what is the dist function's mean?
Posted by Benjamin Hornberger on Wed, 18 May 2005 18:57:45 GMT
View Forum Message <> Reply to Message

Benjamin Hornberger wrote:
>

> if you do a 2-dimensional
> F.T. (say, of an N x N array), DIST() will give you the frequency
> indices. Then you can create an array with spatial frequencies by
>
> freq = dist(N, N) / (N * delta)
>
> where delta is your real space sampling interval.
>

As a side note, I realized now that the IDL-provided DIST function has a
limitation in that it can't handle cases which are not symmetric in X
and Y. Even though you can specify N and M separately, if you want to
create an array of frequencies by scaling DIST's result by a factor, you
can't do it unless the real-space field of view is a square. In other
words, N * dx = M * dy is required (dx, dy are the real-space sampling
intervals).

I wrote a replacement which can do this. It can also return the
frequencies (rather than frequency indices) directly if you pass
sampling intervals or the Nyquist frequency in X and Y. In case
somebody's interested ...

Benjamin

;+
; NAME:
;
; BH_DIST
;
;
; PURPOSE:
;
; This function is a more versatile replacement for the
; IDL-provided DIST() function. If a real-space sampling interval
; or a maximum (Nyquist) frequency is given, it can calculate the
; frequency array directly. The number of pixels and the sampling
; intervals can be different in the x and y directions.
;
; Note: If you only specify nx, and possibly ny, this function
; does exactly the same as the IDL-provided DIST() function.
;

Page 1 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4991
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=20890&goto=44133#msg_44133
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=44133
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

;
; AUTHOR:
;
; Benjamin Hornberger
; benjamin.hornberger@stonybrook.edu
;
;
; CATEGORY:
;
; General programming, frequency analysis
;
;
; CALLING SEQUENCE:
;
; Result = BH_DIST(nx, ny, dx, dy)
;
;
; RETURN VALUE:
;
; Returns a rectangular array in which the value of each element is
; equal to its frequency index. If dx, and optionally dy, are
; passed, the array will contain frequencies rather than frequency
; indices.
;
;
; INPUT PARAMETERS:
;
; nx: Number of pixels in the X direction.
;
;
; OPTIONAL INPUT PARAMETERS:
;
; ny: Number of pixels in the Y direction. If not passed, it will
; be set equal to nx.
;
; dx: Real-space sampling interval in the X direction. If this
; parameter is passed, the function will return an array of
; frequencies rather than frequency indices. If additionally the
; keyword FMAX is set, dx is interpreted as maximum frequency in
; the X direction (Nyquist frequency).
;
; dy: Real-space sampling interval in the Y direction. If dy is not
; passed, but dx is, it is assumed to be equal to dx. If
; additionally the keyword FMAX is set, dy is interpreted as
; maximum frequency in the Y direction (Nyquist frequency).
;
;
; INPUT KEYWORDS:

Page 2 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

;
; CENTER: If this keyword is set, the result will be shifted so
; that the zero frequency is at nx/2, ny/2 (which means right in
; the center for odd numbers of pixels).
;
; FMAX: If this keyword is set, dx and dy are interpreted as
; maximum (Nyquist) frequencies in the X or Y direction, rather
; than real space sampling intervals. This keyword has no effect
; if neither dx nor dy are given.
;
;
; OUTPUTS KEYWORDS:
;
; FX, FY: Set these keywords to named variables which will contain
; one-dimensional arrays of frequencies in the X and Y
; directions.
;
;
; EXAMPLE:
;
; To calculate a 100 x 120 array of spatial frequencies, with
; real-space sampling intervals of 1.2 and 1.4 (arbitrary units --
; the units for the frequencies will just be the inverse):
;
; Freq = BH_DIST(100, 120, 1.2, 1.4)
;
;
; MODIFICATION HISTORY:
; Written: BH 2005-05-16
;-

FUNCTION bh_dist, nx, ny, dx, dy, $
 fx=fx, fy=fy, $
 fmax=fmax, $
 center=center

 compile_opt idl2
 on_error, 2

 IF n_elements(nx) EQ 0 THEN message, 'must specify at least nx'
 IF n_elements(ny) EQ 0 THEN ny = nx

 nx1 = long(nx)
 ny1 = long(ny)

 ;; shift parameters
 sx = keyword_set(center) ? 0 : -nx1/2
 sy = keyword_set(center) ? 0 : -ny1/2

Page 3 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 ;; 1d frequency arrays
 fx = shift(findgen(nx1)-nx1/2, sx)
 fy = shift(findgen(ny1)-ny1/2, sy)

 ;; If sampling intervals are passed, we calculate frequencies rather
 ;; than frequency indices. If only dx has been passed, dy is assumed
 ;; to be the same. If the keyword FMAX is set, we take dx and dy as
 ;; maximum (Nyquist) frequencies.
 IF n_elements(dx) GT 0 THEN BEGIN
 IF n_elements(dy) EQ 0 THEN dy = dx
 fx *= (keyword_set(fmax) ? (1.*dx/(nx/2)) : (1./(nx1*dx)))
 fy *= (keyword_set(fmax) ? (1.*dy/(ny/2)) : (1./(ny1*dy)))
 ENDIF

 ;; 2d frequency arrays
 fx2d = rebin(fx, nx1, ny1)
 fy2d = rebin(reform(fy, 1, ny1), nx1, ny1)

 return, sqrt(fx2d^2.+fy2d^2.)

END

Page 4 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

