
Subject: Why IDL Is Not My Favorite Platform (was Re: IDL alternatives?)
Posted by zowie on Thu, 01 Jun 1995 07:00:00 GMT
View Forum Message <> Reply to Message

Charles Cavanaugh (cavanaug@uars1.acd.ucar.edu) wrote:
: I read in various places (Mr. Deforest's above posting being one) about
: how IDL's API is so-o-o-o horrible. I do not understand this. To me,
: IDL seems like a Fortran 90 - Pascal morph, with dynamic typing,
: automatic variables, automatic garbage collection and a useful event-
: driven paradigm all thrown in the mix.

Yep. You about summed it up [except that the gc, at least in 3.5, is
broken]. Throw in a few references to APL, shake well, and you've got
it.

My gripe isn't with the concept of IDL -- IMHO, this type of tool
(with APL-like vector processing, simple imperative structure, the
things Mr. Cavanaugh revers to, etc.) is exactly what is needed for
scientific applications.

When I complain about the API, it's because the whole structure resembles
a large collection of hacks, each with a unique user interface, and
with little or no forethought about generalization. One gets the feeling
that each tool or feature is crufted onto a mass of features that
just accreted over the kernel interpreter, rather than carefully executed
in an obvious Right Way according to some master plan. Here are a few
representative warts on the programmer interface, at the syntax, data
structure, and standard library levels. The troubles with support at
the compilation and debugging level have been explored in another parallel
thread.

For an example in the language syntax itself [one of many], the vector
processing is very nice -- but (at least, in 3.5 -- don't know if this
has changed in 4.0) the n:m and * syntaxes don't generalize to higher
dimensions. You're left having to program the innermost dimension of
a large array operation as a vector, and then write a for loop to do
the operation across the other dimensions: two completely different
strategies for different aspects of the same large parallel operation.
While the system works, it makes code less readable and makes the
programmer's environment model that much more complicated. Given that
one is implementing vectorized operations, one ought to generalize
them better.

An example of poor data structure design: Matrices act like their
transposes. Enough said. Another: that cruft about a double
quote denoting a string constant OR an octal number. The command
	print,"05 hello"
is a syntax error. Sure, you can work around it, but it's ugly

Page 1 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=497
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=2992&goto=4414#msg_4414
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=4414
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

as sin, and it's just one more useless detail to have to remember.

An example of a poorly designed collection of utilities: the whole
friggin' plotting package. Now, the package itself is pretty nice:
there're semi-device-independent plotting commands and so forth that
work on a wide variety of devices, with a large number of knobs
to frob. The problem is that it isn't assembled or organized in
a coherent manner, and so is very hard to use without resorting to
trial and error.

To compare with a "good package" to do the same thing, get a copy of
Symantec C++ 7.0 for Macintosh, or CodeWarrior 6 (which is, I believe,
the latest version) from Metrowerks, and read the manuals on their
plotting and window objects. The problems to be solved are
comparable: both IDL and the C++ packages need to present a large
number of tools to handle a complicated conceptual array of abstract
objects (multiple coordinate systems and planes that are abstracted
out of the screen, page, or what-have-you to be drawn on). All three
packages are aimed at the academic and professional programming
markets, so the users (ie programmers) can in each case be expected
to have a similar range of background knowledge and experience.
The two C compilers, each of which costs an order of magnitude
less than IDL (and comes, of course, with a smaller standard library),
are professionally conceived, designed, and integrated, in contrast
to IDL's sprawling amorphous mass of disconnected parts.

Compare the IDL User's Manual and/or Reference Guide to the comparable
portions of the Metrowerks and/or Symantec documentation on handling
graphical objects. Compare the organization of the graphical tools in
each system. Both Metrowerks and Symantec produce well-organized
programmer interfaces, coherent suites of prefab routines, and
documentation: the abstract concepts are presented clearly in the
documentation, and adhered to in calling conventions throughout the
libraries. This clear and well-organized quality is not just a
product of the structure of the language, it is the result of careful
thought by the development team.

In contrast, while the IDL User's Guide contains a very brief
introduction to the 'screen coordinate system', it is not always clear
which calls use what coordinate system by default. Each graphics
built- in routine can take a subset of the graphics keywords that are
supported by the current device, but not all relevant keywords are
always available. One has a choice of specifying distances in the
units of several coordinate systems ("device units","screen units",
etc.), or having them automatically translated to Imperial units
(inches). However, PostScript pixels come by default in SI sizes.
Etc. There are enough differences in the behavior of each device that,
in practice, it is difficult to write code that work on all devices

Page 2 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

without explicitly writing subsections to handle each type of graphics
output -- this need begs the question of why the complex device-
independent package is needed in the first place.

Finally, the tools that are presented to the programmer are (as other
posters have mentioned) somewhat inferior when compared to, for example,
the THINK (Symantec) debugger for Macintosh or the GNU debugger for
everything else. While some effort has been made at trap handling
and re-entry, the traceing, stack manipulation, and breakpoint
facilities (particularly in the widget libraries) leave much to be
desired.

None of these problems individually would cause me to dislike the
language as much as I do. In fact, despite all the hassles and
heartache, I like the basic interpreter enough to use it (or something
like it) for most of my scientific programming. The world needs something
like this -- a bit of APL mixed in with a bit of FORTRAN with structure,
and I'm willing to tolerate all the poor planning and disorganization
to use what I see as fundamentally a good tool.

The deciding point for me has been what I perceive as RSI's
money-grubbing tactics. IDL is extremely highly priced, especially
when compared to other programming packages with a similar audience
and a much better, slicker final product. Maintenance costs are high,
too. Furthermore, once one purchases IDL and writes some code in it,
one is obliged to continue to keep one's license up-to-date. One
sales clerk smugly informed me that "If you allow your maintenance to
expire, we normally require you to pay for maintenance for the entire
elapsed period before you can re-instate it", a policy stricter than
California's auto-registration laws! (She did magnanimously waive the
re-instatement fee on our license, because RSI is dropping support for
our platform (MIPS/Ultrix in the near future).

I don't mind paying top dollar for top notch products, but IMHO that
is not what one gets when one buys IDL. If I, a professional
astrophysicist and computer programmer, am spending lots of my time
figuring out a particularly opaque set of library function calls, then
(IMHO) the problem is with the library or its documentation. When I
buy an expensive mechanic's set of Snap-On tools, I expect them to
work better and more easily than the discount set at Pak-n-Save.
Similarly, when I shell out $1500 for a single-user license to run an
interpreter and development package, I expect that package to be
cleanly designed and well documented, not crufted together from random
bits and pieces on (apparently) an ad-hoc basis.

Page 3 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

: OK, so maybe you have to specify a continuation character, but in C you
: have to suffix lines with a ';'. To be honest, I would rather put a '$'
: at the end of the few lines I continue than put a ';' at the end of nearly
: every line. But here I am digressing. (Let's not get started on RSI's
: business practices
: My point being : it aint LISP, it aint object-oriented, but it does well
: (mostly) what it was designed to do.

: But maybe I am in the dark about this whole 1970's interface (I have only
: been programming since 1989), and I am always open to change. So if you
: (or another API slammer) could show tangible evidence that IDL's programming
: interface is a lava lamp or mood ring compared to C's video-conferencing or
: big-house-with-no-backyard, I will take back all that I have said, and jump
: on [insert language X here]'s bandwagon.

: Charles
: --
: Charles Cavanaugh | "Words are very unnecessary, they can only do harm"
: cavanaug@ncar.ucar.edu | - Depeche Mode
: NCAR Boulder, CO, USA | "Facts all come with points of view"
: My opinions | - Talking Heads

--
Craig DeForest "My research group launched a rocket into space, and all I
 got was this lousy T-shirt"

Page 4 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

