Subject: Re: plotting data as it arrives using objects
Posted by Rick Towler on Tue, 14 Jun 2005 17:21:10 GMT

View Forum Message <> Reply to Message

clive_cook wrote:

Ok, i didn't do a good job of explaining myself. I've also done a

little bit of research. Ultimately i'm looking to produce a contour

plot (usually you can use the contour function in direct graphics or
the idigrcontour object). The idea is to produce this plot as data
arrives, arriving approximately one profile every 2.5 seconds. Its a
slow inefficient way to re-calculate the contour so in direct graphics
i drew one profile at a time onto a plot using the plots command and
scaling the colours to the data values (so a series of these profiles
produces a contour plot however it is drawn on the fly).

So now i am trying to do something similar with object graphics. |

tried doing it by updating my data to the idlgrcontour object using
contour->setproperty,data_values=new_data as new data arrives. The
problem with this is as the new_data array increases in size the time
taken to re-calculate the contour also increases, eventually it becomes
far to slow. I'm looking for a way to do this in a more efficicent way.

VVVVVVVVVYVYVYVYVYVYVYV

O.K. Now you're making sense :)

First you'll want to get an idea if your design goals are practical.
Determine how many vertices you will have in your final surface. You
threw out some numbers a few posts ago but they don't really make sense
in this context. Will you have 1,000, 10,000, 1,000,000? For instance,
1,000,000 vertices may never draw quickly on your system regardless of
program design.

On my machine | noticed a few interesting things. | used the DIST()
function to generate some surfaces of different sizes and then looked at
the performance of the different IDLgr* objects which would be useful in
your case

First thing | noticed is that there is a *lot* of overhead in

IDLgrContour. Makes sense, a lot is going on. What was interesting was
that a filled contour took noticeably longer to re-draw than a

non-filled contour object + a filled surface object. You need to

determine if you need to use IDLgrContour or if IDLgrSurface or
IDLgrPolygon or some combination will be suitable.

Second thing | noticed was that even on my high end PC you aren't going
to contour 1,000,000 vertices quickly. It took almost 2 minutes to draw
the first instance of a *filled* contour with 50 levels. Contrast that

with about 2 seconds for a surface and 27 seconds for a surface plus
non-filled contour with 50 levels. Note that the N_LEVELS keyword has a

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2728
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=21178&goto=44402#msg_44402
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=44402
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

large effect on draw time.
Do you really need the contour lines?

Performance wise, IDLgrPolygon would be the best way to go as there will

be the least amount of overhead when updating data. As each profile

comes in you'll need to mesh that row of data and append the vertex data

onto your data array and the connectivity data onto your polygons array.
You can get the same color by value effect with texturing but you will

not have your contour lines. | have meshing code which would be of some

help.

Or you may find that you can live with an IDLgrSurface object plus a
non-filled IDLgrContour object. You may also find that in this case you
can live with updating your contour object less frequently (say every
10-20 profiles) to limit overhead. You'll still have the surface

object, the contour lines will just lag.

Determine what is possible with your hardware, if there are any upgrades
that you could make to speed along the process (at this point you're CPU
bound), and go from there.

-Rick

Page 2 of 2 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

