
Subject: Re: Why IDL needs Garbage Collection
Posted by JD Smith on Thu, 21 Jul 2005 17:05:24 GMT
View Forum Message <> Reply to Message

Creating a reference counting super-class for all objects to inherit
from isn't hard, and I suspect this is what David has done in
Catalyst. The real problem is pointers, which have no such semantics.

One obvious option would be to make a composite pointer type which is
actually an object, let's call it oPtr, which does nothing other than
deliver the value of the contained pointer, and keep a reference count
for it. A few problems with this:

1. There still is no automatic way to increment the reference count;
programs would have to do this themselves whenever they store a copy
of the oPtr object. If a program forgets, then the reference count is
wrong and the pointer may be freed at the wrong time. Compare this to
a system in which the program doesn't even have to think about
reference counts, but instead just overwrite its pointers with
impunity.

2. Programs still have to explicitly free all oPtr's when they are
through with them (which doesn't always correspond to when they are
through running). They can free things with impunity without worrying
about stepping on someone else's toes, but they still have to actually
free it. I.e., this type of system gaurds allows run-time
flexibility, but not accommodate simple coding mistakes. Also,
OBJ_DESTROY can't be used (since by the time the Cleanup code is
called, it's too late). You'd have to introduce something like
oPtr->Destroy (and make sure everyone uses that).

3. It's fairly heavy weight, and introduces an awkward syntax.
Instead of *self.myptr, you'd need self.myoPtr->GetValue(). This
creates a copy of the heap data, whereas *self.myptr simply references
in the in-memory copy of the heap data. For small things, no big
deal, for big things, potentially a very big deal.

So while this may appear to be a partial solution, I think coding
garbage collection at a much lower level (essentially optimizing
HEAP_GC, and having it run automatically) would be far superior.
There are a wide variety of interesting GC technologies to choose
among, from simple mark-and-sweep, reference counting, etc. to
parallel algorithms which don't requiring stopping everything to do
their work. Since IDL is now multi-threaded, it should be a
manageable operation.

JD

Page 1 of 1 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=21385&goto=44917#msg_44917
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=44917
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

