Subject: Re: Why IDL needs Garbage Collection
Posted by Antonio Santiago on Thu, 21 Jul 2005 06:29:10 GMT

View Forum Message <> Reply to Message

| was thinking on the same problem a couple of days ago
(http://www.grahi.upc.edu/santiago/?p=149).

The implementation of IDL objects is pretty similary to the GObject
system.

GObject is a library written in C (as part of GTK+ project) that realizes
some object oriented compiler functions.

Both have an ‘initializer' and a "finalizer' object methods,

althought GObject has an 'initializer/finalizer' for the entery class.

Both use structure inheritance and only gives simple inheritance and
method overriding, but in GObject every time you create/destroy an object
the "system" controls the refcount of the object and only destryis it when
is O.

Another point that surprise me, as C programmer, is the use of
"conventional memory" and "heap memory":
p=PTR_NEW('hello")

'p' is in "conventional memory" an is controlled by GC and 'hello' is in
heap memory and is my responsability free it.

a=10
p=PTR_NEW(a)

a and p are in "conventional memory" but 'p' points to a copy of 'a’ at
heap memory. What?? | want a reference to the real 'a' !!!

Once you are familiarized with this it is no problem but | dont understant
the utility of this. | suposse it is for problems in object oriented
implementation and the pre-implemented "conventional memory".

Bye.

On Wed, 20 Jul 2005 14:24:43 -0700, JD Smith wrote:

IDL pointers are great. We all use them to tuck things inside of
structures, or pass around heavyweight data without penalty. IDL
objects are great too, encapsulating data and functionality, enabling
reasonably hassle-free GUI programming, and more. What is not great
is the inflexibility that IDL's manual resource management imposes.
Sure, object's have their Cleanup method, and that can be used to

VVVVYVYVYV

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4959
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=21385&goto=44930#msg_44930
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=44930
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVYVYVYVYVYV

effectively free the object's heap data when the object is explicitly
destroyed. Very useful. But, and this is the catch, that requires
someone or something to continuously keep track of that object, and
free it at the right time. Consider the simple case:

IDL> a=0bj_new('Foo')
IDL> a=0bj_new('Bar’)

Well, that's a memory leak right there. No one know about the 'Foo'
object anymore. This is easy enough to avoid, but now imagine a
system for passing around many many pointers and objects. For a
concrete example, let's imagine a pointer pointing to a big pile of

data called BOB. To keep from using too much memory, you don't want
to replicate BOB in every corner of a set of applications that need to
use it, so you allow different routines to share the BOB pointer.

Fine. Well, what happens when a new BOB pointer gets sent in to
occupy the same slot? Whose job is it to free the original BOB? How
do you know someone else isn't still making use of the data being
pointed to?

Because of these types of issues, | find myself passing around lots of
back-channel information like "make sure to free this pointer when you
are done, but not this one, because I'll still be using that here,
probably”. Ugly. You can of course invent your own form of garbage
collection (e.g. reference counting), but why shouldn't IDL, which
clearly can keep track of heap data which is no longer being pointed
to (vz. HEAP_GC,/VERBOSE), do the dirty work for you? Then, whether a
pointer or object is shared across 10 different programs for the
duration of an IDL session, or simply created, used once, and then
discarded, you wouldn't need any additional logic to decide if and
when to free a given resource. And no, | don't consider putting
HEAP_GC in your event callback effective garbage collection.

This is why RSI needs to implement a simple but effective garbage
collection paradigm in the next version of IDL. Anyone agree?

JD

Antonio Santiago Pi¢Yrez
(email: santiago<<at>>grahi.upc.edu)

(
(

www: http://www.grahi.upc.edu/santiago)
www: http://asantiago.blogsite.org)

GRAHI - Grup de Recerca Aplicada en Hidrometeorologia
Universitat Politi¢ ¥2cnica de Catalunya

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

