
Subject: Why IDL needs Garbage Collection
Posted by JD Smith on Wed, 20 Jul 2005 21:24:43 GMT
View Forum Message <> Reply to Message

IDL pointers are great. We all use them to tuck things inside of
structures, or pass around heavyweight data without penalty. IDL
objects are great too, encapsulating data and functionality, enabling
reasonably hassle-free GUI programming, and more. What is not great
is the inflexibility that IDL's manual resource management imposes.
Sure, object's have their Cleanup method, and that can be used to
effectively free the object's heap data when the object is explicitly
destroyed. Very useful. But, and this is the catch, that requires
someone or something to continuously keep track of that object, and
free it at the right time. Consider the simple case:

IDL> a=obj_new('Foo')
IDL> a=obj_new('Bar')

Well, that's a memory leak right there. No one know about the 'Foo'
object anymore. This is easy enough to avoid, but now imagine a
system for passing around many many pointers and objects. For a
concrete example, let's imagine a pointer pointing to a big pile of
data called BOB. To keep from using too much memory, you don't want
to replicate BOB in every corner of a set of applications that need to
use it, so you allow different routines to share the BOB pointer.
Fine. Well, what happens when a new BOB pointer gets sent in to
occupy the same slot? Whose job is it to free the original BOB? How
do you know someone else isn't still making use of the data being
pointed to?

Because of these types of issues, I find myself passing around lots of
back-channel information like "make sure to free this pointer when you
are done, but not this one, because I'll still be using that here,
probably". Ugly. You can of course invent your own form of garbage
collection (e.g. reference counting), but why shouldn't IDL, which
clearly can keep track of heap data which is no longer being pointed
to (vz. HEAP_GC,/VERBOSE), do the dirty work for you? Then, whether a
pointer or object is shared across 10 different programs for the
duration of an IDL session, or simply created, used once, and then
discarded, you wouldn't need any additional logic to decide if and
when to free a given resource. And no, I don't consider putting
HEAP_GC in your event callback effective garbage collection.

This is why RSI needs to implement a simple but effective garbage
collection paradigm in the next version of IDL. Anyone agree?

JD

Page 1 of 1 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=21401&goto=44944#msg_44944
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=44944
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

