Subject: Re: Maximum value array resampling
Posted by JD Smith on Mon, 08 Aug 2005 17:48:59 GMT

View Forum Message <> Reply to Message

On Fri, 05 Aug 2005 19:57:55 -0400, Richard G. French wrote:

>
>>

>> For arbitrary images with both dimensions even:

>>

>> d=size(x,/DIMENSIONS) & nx=d[0]/2 & ny=d[1]/2

>> y=transpose(max(reform(transpose(reform(x,2,nx,2*ny),[0,2,1]), $

>> 4,ny,nx),DIMENSION=1))

>>

>> How does it work? It juggles dimensions so that the indices of all the

>> 2x2 sub-arrays are next to each other in memory, and then uses

>> max(/DIMENSION) to collapse over them. The inner call to REFORM puts

>> them adjacent to each other, but in the wrong dimension, then TRANSPOSE
>> makes them adjacent in the fast-changing dimension. The restis

>> straightforward.

>>

>> There may be a quicker way with only one call to TRANSPOSE, but |

>> couldn't find it (anyone?). Also, if you don't care to keep X, throw a

>> couple of / OVERWRITE keywords for both REFORM statements, to save some
>> memory and time.

>> JD

On atime test, | found that this clever approach takes 18 sec for a 5000 x
4000 image, compared to the inelegant routine | posted that takes 4 seconds
to compute the indices of each element and then 7 seconds for the resampling
of each image. For lots of images, the speed gain is about 2.5x compared to
this routine. Now we just need to find a way to speed up the clever routine
and we'll be all set! I had not known about the /IDIMENSION keyword to the
MAX() function - thanks for the lead on that! Are you sure there isn't a way

to use HISTOGRAM to do this?

V VVVVVYVYVYV

| find just the opposite: your loop+REBIN method is much slower using
5000x4000 long integer arrays:

IDL> .run /home/jdsmith/idl/test/max_local.pro
% Compiled module: $MAINS.

no loop [5000,4000]: 3.8933

French index loop [5000,4000]: 33.1060
modified index loop [5000,4000]: 1.0784

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=21416&goto=45011#msg_45011
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=45011
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

l.e. yours is about 8-10x slower on this size image! All of this of
course depends on memory (1GB here). | suspect your multiple
REBIN'ing of those large images is to blame. That said, | tried with
a much smaller image, but the results were similar:

IDL> .run /home/jdsmith/idl/test/max_local.pro
% Compiled module: $MAINS.

no loop [1000,1000]: 0.0975

French index loop [1000,1000]: 0.5524
modified index loop [1000,1000]: 0.0589

So, what is the modified index loop which beats both of ours? Your
method inspired this significant simplification:

d=size(x,/DIMENSIONS) & nx=d[0] & ny=d[1]
nx2=nx/2 & ny2=ny/2

inds=rebin(lindgen(nx2)*2L,nx2,ny2,/SAMPLE)+ $
rebin(transpose(lindgen(ny2)*2L*nx),nx2,ny2,/SAMPLE)

xmax=x[inds]
offsets=[0OL,1L,nx,nx+1L]
for i=1,3 do xmax >= x[inds+offsets]i]]

So, at least in this case, the fastest (and definitely the most
straightforward to understand) method involves a loop! It can even be
extended to nxm (instead of 2x2) local box sizes quite
straightforwardly. Heresy, you say? As many have pointed out, if you
keep the amount of work per loop iteration large, you don't feel IDL's
loop penalty. Indexing and then comparison operating on images of
size 2500x2000 definitely counts as a "large amount of work". The
other take away point: relative algorithm speed can depend sensitively
on your memory and other local environment. The only sure way to pick
the speed winner is to test various options on your data with your
equipment.

JD

Page 2 of 2 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

