
Subject: Re: averaging over same index
Posted by JD Smith on Tue, 23 Aug 2005 19:53:05 GMT
View Forum Message <> Reply to Message

On Tue, 23 Aug 2005 11:41:46 -0500, Kenneth Bowman wrote:

> In article <1124814140.855435.78130@f14g2000cwb.googlegroups.com>,
> andi.walther@web.de wrote:
>
>> Hello,
>>
>> I have an array V(alues) and an array S(ubscripts of a target array) and
>> I want to
>> extract the mean of all values with the same index in order to put them
>> into the new array.
>>
>> As a simple example:
>> 		V = [3, 7, 99, 5, 2 , 10]
>> 		S = [1, 3, 3, 2 , 0 ,1]
>>
>> 		new vector should be --> new = [2 , 6.5 , 5, 53]
>>
>> slow way would be: for n = 0 , max(S)-1 do new[n]=mean(v[where(S eq
>> n)])
>>
>> a bit faster without WHERE in the loop:
>>
>> 					VSorted	=	v[sort(S)]
>> 					SSorted	=	S[sort(S)]
>> 					uu		= 	uniq(iSorted)
>> 					for n = 0 , n_elements(uu)-1 do new[iSorted[uu[n]]] =
>> mean(vSorted[n:(n-1)>0])
>>
>> But is there a way to do what I want without resorting to a loop? In my
>> real-world problem I have vectors with 500000 elements and the number of
>> the occurence of indices
>> are quite irragular and can exceed 30 times.
>>
>> Thanks Andi
>
> Use HISTOGRAM with reverse indices to get lists of each s. Then average
> using array subscripting for each list.
>
> See JD's HISTOGRAM tutorial on David's web site.
>
> http://dfanning.com/tips/histogram_tutorial.html

And if you really have the need for speed, check out this thread where

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=21520&goto=45290#msg_45290
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=45290
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

we cover nearly all possible algorithms for this problem quite
exhaustively, many using HISTOGRAM (including the infamous
histogram-of-a-histogram method alluded to in the tutorial):

 http://www.dfanning.com/code_tips/drizzling.html

I also dug out that old testing code and put it up here:

 http://turtle.as.arizona.edu/idl/time_test_drizzle_alg.pro

This is a good point of embarkation after absorbing the HISTOGRAM
tutorial, going deeper into the potential uses of this function. It
also serves to illustrate a simple time testing setup.

Give it a run and see what's fastest for you (though do make sure you
understand the round-off issues with the sort cumulative method). For
mixed sparseness of indices in the same problem, from 1:20 to 30:1,
you'll probably have the best luck with one of the specialized
REVERSE_INDICES methods. Just plug `data' and `inds' in from your
problem. The sad and amusing thing is how much faster the one-line
literal loop approach in a compiled C DLM is (about 20x faster than
the fastest abstruse IDL method).

JD

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

