
Subject: Re: Array juggling help needed
Posted by Haje Korth on Mon, 26 Sep 2005 12:19:47 GMT
View Forum Message <> Reply to Message

JD,
thanks for sheeding further light onto the darkness of my histogram
knowledge!

Haje

"JD Smith" <jdsmith@as.arizona.edu> wrote in message
news:pan.2005.09.23.18.07.17.267156@as.arizona.edu...
> On Fri, 23 Sep 2005 07:40:59 -0600, David Fanning wrote:
>
>
>> This is the "index chunking" problem discussed in the tutorial
>> and last week in this newsgroup:
>>
>> IDL> n = [1, 5, 4, 1]
>> IDL> d = 1./n
>> IDL> print, d
>> 1.00000 0.200000 0.250000 1.00000
>> IDL> h=histogram(total(n,/CUMULATIVE)-1,/BINSIZE,$
>> MIN=0,REVERSE_INDICES=ri)
>> IDL> I=ri[0:n_elements(h)-1]-ri[0]
>> IDL> print, d[I]
>> 1.00 0.20 0.20 0.20 0.20 0.20 0.25 0.25 0.25 0.25
>
> Maybe I should provide a little more explanation for what really is an
> underhanded trick. The trick requires that you understand how
> REVERSE_INDICES are setup. For a given bin in a histogram, the
> "i-vector" (or first half) part of REVERSE_INDICES (RI) will contain a
> series of index pairs into the "o-vector" (or second half) of RI.
> These two vectors could have been kept separate, saving countless
> person-hours of head scratching, but they were instead glued together
> into one ungainly beast. In any case, there will be a pair of indices
> in the i-vector for each bin in the histogram. This pair tells you
> the range of elements of REVERSE_INDICES which contain the original
> indices of the data which fell in that bin. If the bin is empty, the
> pair will be the same number (i.e. spanning no elements). This is the
> crux of our trick. We don't care about the data, or the histogram
> itself, of the indices in the data, just the i-vector.
>
> Here's how it works. Let's imagine we have a histogram which has lots
> of empty bins, like this:
>
>

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2071
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=21662&goto=45666#msg_45666
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=45666
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> | | | | |
> | | | | |
> | | | | * |
> +---+---+---+---+
> 0 1 2 3
>
> Remember, when a bin is empty, the corresponding pair of i-vector
> indices is the same number. The i-vector for this might look like:
> [5,5,5,5,6], which is to say:
>
>
> Bin RI Range
> =============
> 0 5:5 (i.e. empty)
> 1 5:5
> 2 5:5
> 3 5:5
> 6 5:6 (i.e. one inside)
>
> For those first three empty bins, there were 4 5's in a row. Why is
> it 5? Because the histogram has 4 elements. So, we were able to get
> 4 5's in a row, simply by creating a histogram with an integer 3, like
> this:
>
> IDL> h=histogram([3],MIN=0,/BINSIZE,REVERSE_INDICES=ri)
>
> Subtracting off ri[0], and we have 4 0's in a row. Getting closer.
> How can we arrange to sparsely sprinkle a single drop in all the
> correct histogram buckets, such that the spacing between them will
> create the right sort of i-vector? By using total(/CUMULATIVE).
>
> IDL> n=[1,5,4,1]
> IDL> print,total(n,/CUMULATIVE)
> 1.00000 6.00000 10.0000 11.0000
>
> Now we must subtract 1 because it always takes 1 more index for an
> equivalent set of pairs in the i-vector. You can see that this is now
> the perfect "sparse sprinkling" to get just what we want:
>
> IDL> print,histogram(total(n,/CUMULATIVE)-1,MIN=0)
> 1 0 0 0 0 1
> 0 0 0 1 1
>
> Notice the spacing between the 1's... 1,5,4,1. We're almost there.
> Now the first part of RI will contain the chunked indices we need:
>
> IDL> h=histogram(total(n,/CUMULATIVE)-1,MIN=0,REVERSE_INDICES=ri)
> IDL> print,ri[0:n_elements(h)-1]

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> 12 13 13 13 13 13
> 14 14 14 14 15
>
> Simply subtract off the offset:
>
> IDL> print,ri[0:n_elements(h)-1]-ri[0]
> 0 1 1 1 1 1
> 2 2 2 2 3
>
> And there you have it. This is not intuitive. It's simply a
> convenient trick to leverage the speed of HISTOGRAM to do something
> its designers probably never intended you to do.
>
> JD
>

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

