Subject: Re: Polygon Clipping Algo in IDL
Posted by Mark Hadfield on Tue, 13 Dec 2005 01:38:42 GMT

\Y,

iew Forum Message <> Reply to Message

raval.chintan@gmail.com wrote:

VVVVYVYVYVYV

>

Dear All,

Does any one has written code for the polygon clipping (Cohen
Sutherland or Liang Baskey) in IDL? or is there any direct function
available in IDL?

Regards
Chintan

Attached, based on code from JD Smith. These are part of my Motley
library and may well require other routines in same. See

http://www.dfanning.com/hadfield/id/README.html

Mark Hadfield "Kei puwaha te tai nei, Hoea tahi tatou"
m.hadfield@niwa.co.nz
National Institute for Water and Atmospheric Research (NIWA)

+

NAME:
MGH_POLYCLIP

; PURPOSE:

Clip an arbitrary polygon on the X-Y plane to a line parallel
to the X or Y axis using the Sutherland-Hodgman algorithm.

; CATEGORY:

Graphics, Region of Interest, Geometry

; CALLING SEQUENCE:

result = MGH_POLYCLIP(clip, dir, neg, polin, COUNT=count)

; RETURN VALUE

The function returns the clipped polygon as a [2,n] array. The
second dimension will equal the value of the COUNT argument, except
where COUNT is 0 in which case the return value is -1.

; POSITIONAL PARAMETERS

cval (input, numeric sclar)
The value of X or Y at which clipping is to occur

Page 1 of 7 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1027
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=22028&goto=46730#msg_46730
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=46730
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

;dir (input, integer scalar)
;. Specifies whether clipping value is an X (dir = 0) or Y (dir =
;1) value.

; neg (input, integer scalar)
; Set this argument to 1 to clip to the negtive side, 0 to clip to
; the positive side.

;polin (input, floating array)
A [2,m] vector defining the polygon to be clipped.

; KEYWORD PARAMETERS
; COUNT (output, integer)
; The number of vertices in the clipped polygon.

; PROCEDURE:
; The polygon is clipped using the Sutherland-Hodgman algorithm.

; This function is based on JD Smith's implementation of the
; Sutherland-Hodgman algorithm in his POLYCLIP function. He can
; take all of the credit and none of the blame.

SHHHHBHIHH AR H AR R AR B R

; This software is provided subject to the following conditions:

1 NIWA makes no representations or warranties regarding the
; accuracy of the software, the use to which the software may
; be put or the results to be obtained from the use of the
; software. Accordingly NIWA accepts no liability for any loss
; or damage (whether direct of indirect) incurred by any person
; through the use of or reliance on the software.

; 2. NIWA is to be acknowledged as the original author of the
; software where the software is used or presented in any form.

B R R R R R R R A R R R R AT, R

: MODIFICATION HISTORY:
: Mark Hadfield, 2001-10:
. Written, based on JD Smith's POLYCIIP.

function mgh_polyclip, cval, dir, neg, poly, COUNT=count

compile_opt DEFINT32
compile_opt STRICTARR
compile_opt STRICTARRSUBS

Page 2 of 7 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

compile_opt LOGICAL_PREDICATE

if n_elements(poly) eq 0 then $
message, BLOCK='mgh_mblk_motley', NAME="mgh_m_undefvar’, 'poly'

;; If the polygon argument is a scalar then return a scalar to
;; to indicate that the polygon has no vertices.

count=0
if size(poly, /N_DIMENSIONS) eq 0 then return, -1

;; Vector "in" specifies whether each vertex is inside
;; the clipped half-plane

case dir of
0B: in = neg ? reform(poly[0,*] It cval) : reform(poly[0,*] gt cval)
else: in = neg ? reform(poly[1,*] It cval) : reform(poly[1,*] gt cval)

endcase

;; Calculate number of points in polygon--it is a little

;; more efficient to get it from the size of "in" than

;; from the dimensions of "poly"

np = n_elements(in)

;; Vector "inx" specifies whether an intersection with the clipping line
;; Is made by the segment joining each vertex with the one before.

inx = in xor shift(in, 1)

;; Precalculate an array of shifted vertices, used in calculating
;; intersection points in the loop.

pols = shift(poly, 0, 1)

;; Loop thru vertices

for k=0,np-1 do begin
;; If this segment crosses the clipping line, add the intersection
;; to the output list. | tried calculating the intersection points

;; outside the loop in an array operation but it turned out slower.

if inx[K] then begin

sO = pols[0,k]
sl = pols[1,k]
p0 = poly[0,K]

Page 3 of 7 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

pl = poly[1,k]

case dir of
0B: ci = [cval,s1+(p1l-s1)/(p0-s0)*(cval-s0)]
else: ci = [sO+(p0-s0)/(pl-s1)*(cval-sl),cval]

endcase

polout = count eq 0 ? [ci] : [[polout],[ci]]

count ++

endif

;; If this vertex is inside the clipped half-plane add it to the list

if in[k] then begin
polout = count eq 0 ? [poly[*K]] : [[polout],[poly[*,K]]]
count ++

endif

endfor
return, count gt 0 ? polout : -1
end

+
; NAME:

; MGH_POLYCLIP2

; PURPOSE:

; Clip an arbitrary polygon on the X-Y plane to a line of arbitrary

; orientation using the Sutherland-Hodgman algorithm.

; CATEGORY:
; Graphics, Region of Interest, Geometry

; CALLING SEQUENCE:

; result = MGH_POLYCLIP2(clip, poly, COUNT=count)

; POSITIONAL PARAMETERS

; poly (input, floating array)

;A [2,m] vector defining the polygon to be clipped.

; clip (input, 3-element numeric vector)

; This parameter describes the line to be clipped to. The polygon is
; clipped to the half-plane (clip[0] x + clip[1] y + clip[2]) < O.

; KEYWORD PARAMETERS
; COUNT (output, integer)
; The number of vertices in the clipped polygon.

Page 4 of 7 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; RETURN VALUE

. The function returns the clipped polygon as a [2,n] array. The

; second dimension will equal the value of the COUNT argument, except
; where COUNT is 0 in which case the return value is -1.

; PROCEDURE:
; The polygon is clipped using the Sutherland-Hodgman algorithm.

; This function is similar to MGH_POLYCLIP, which was written first

; & clips to vertical or horizontal lines only. It turns out that

; MGH_POLYCLIPZ2 is competitive with MGH_POLYCLIP in terms of speed
; so the former may supersede the latter.

; Both polygon-clipping functions are based on JD Smith's
; implementation of the Sutherland-Hodgman algorithm in his POLYCLIP
; function. He can take most of the credit and none of the blame.

BH R HHHHHH AR AR AR R AR AR A AR AR

; This software is provided subject to the following conditions:

; 1. NIWA makes no representations or warranties regarding the
; accuracy of the software, the use to which the software may

; be put or the results to be obtained from the use of the

; software. Accordingly NIWA accepts no liability for any loss

; or damage (whether direct of indirect) incurred by any person
; through the use of or reliance on the software.

; 2. NIWA is to be acknowledged as the original author of the
; software where the software is used or presented in any form.

S T T T T S T T T T T T R T S i i

: MODIFICATION HISTORY:
. Mark Hadfield, 2002-08:
: Written.

function mgh_polyclip2, poly, clip, COUNT=count

compile_opt DEFINT32

compile_opt STRICTARR
compile_opt STRICTARRSUBS
compile_opt LOGICAL_PREDICATE

if size(poly, IN_ELEMENTS) eq 0 then $
message, BLOCK="mgh_mblk_motley', NAME="'mgh_m_undefvar', 'poly’

Page 5 of 7 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

if size(clip, /N_ELEMENTS) ne 3then $
message, BLOCK="mgh_mblk_motley', NAME="mgh_m_wrgnumelem’, ‘clip'

;; If the polygon argument is a scalar then return a scalar to
;; to indicate that the polygon has no vertices.

count=0
if size(poly, /N_DIMENSIONS) eq 0 then return, -1

;; Precalculate an array of shifted vertices, used in calculating
;; intersection points in the loop.

pols = shift(poly, 0, 1)

;; Vector "pp" is the position of each vertex along the
;; perpendicular to the clipping line. Vector "ps" is the same for
;; the shifted vertices

pp = reform(clip[0]*poly[0,*]+clip[1]*poly[1,*]+clip[2])
ps = shift(pp, 1)

;; Vector "in" specifies whether each vertex is inside the clipped
;; half-plane. Vector "inx" specifies whether an intersection with
;; the clipping line is made by the segment joining each vertex
;; with the one before.

in=pplto
inx = in xor (ps It 0)

;; Loop thru vertices
np = n_elements(in)
for k=0,np-1 do begin

;; If this segment crosses the clipping line, add the
;; intersection to the output list.

if inx[K] then begin
ap = ps[K]/(ps[k]-pp[K])
ci = ap*poly[*,K] + (1-ap)*pols[*,K]
polout = count eq 0 ? [ci] : [[polout],[ci]]
count ++

endif

;; If this vertex is inside the clipped half-plane add it to the
;; list

Page 6 of 7 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

if in[K] then begin
polout = count eq 0 ? [poly[*,K]] : [[polout],[poly[*,Kk]]]
count ++
endif
endfor
return, count gt O ? polout : -1

end

File Attachnents

1) ngh_pol yclip. pro, downl oaded 122 ti nes
2) mgh_pol yclip2. pro, downl oaded 121 ti nes

Page 7 of 7 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=getfile&id=265
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=getfile&id=266
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

