
Subject: Re: Pass by value and performance
Posted by Paolo Grigis on Fri, 16 Dec 2005 11:08:08 GMT
View Forum Message <> Reply to Message

JD Smith wrote:
>  This isn't correct.  De-referenced pointer variables (aka "heap"
>  variables) are passed by reference, just like regular variables (which
>  they are, really).  E.g. in Ken's original example:
>  
>   result = INTERPOLATE(*data.array, x, y, z) ; by reference
>   
>  would indeed pass the pointer heap variable by reference and not by
>  value.  As such it would be much faster (for large arrays) than
>  INTERPOLATE(data.array,x,y,z), which would require copying the full
>  array to a local variable, and would be equivalent to a simple
>  INTERPOLATE(array,x,y,z).

Since we are on the subject of performance, there's nothing like
a little benchmark to bring some light to shine upon the issue...

Let's try this (using rebin for simplicity):

Benchmark 1:
--------------------------------------------------

;initialize large arrays of data
N=2L^27

data={a:lindgen(N),b:ptr_new(lindgen(N))}

c=lonarr(N/2)

nrounds=10
nrebins=10

timevar=fltarr(nrounds)
timeptr=fltarr(nrounds)

;do benchmark
.run
FOR j=0,nrounds-1 DO BEGIN

     print,'Now doing round '+strtrim(string(j+1),2)

     tstart=systime(1)
     FOR i=0,nrebins DO c=rebin(data.a,N/2)
     tend=systime(1)

Page 1 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4906
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=22032&goto=46786#msg_46786
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=46786
http://idlcoyote.com/comp.lang.idl-pvwave/index.php


     timevar[j]=tend-tstart

     tstart=systime(1)
     FOR i=0,nrebins DO c=rebin(*data.b,N/2)
     tend=systime(1)
     timeptr[j]=tend-tstart
ENDFOR
end

------------------------------------------------------

This compares the data.array vs. *data.array performance.
As correctly claimed by JD, there is indeed a difference
between the two approaches:

;"data.array" case
IDL> print,timevar
       32.7094      34.0300      34.7631      33.0446      33.9109
       34.2302      34.2145      33.8960      34.2056      34.2010
;"*data.array" case
IDL> print,timeptr
       18.1812      18.4961      18.5838      17.8924      18.4376
       18.4548      18.0502      18.3959      18.7219      18.0366

However, if we don't have structures, is there a difference
between passing pointers and regular variables? How does
this compare with the structure case?

Benchmark 2:
--------------------------------------------------

;initialize large arrays of data
N=2L^27

a=lindgen(N)
b=ptr_new(lindgen(N))

c=lonarr(N/2)

nrounds=10
nrebins=10

timevar=fltarr(nrounds)
timeptr=fltarr(nrounds)

;do benchmark

Page 2 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php


.run
FOR j=0,nrounds-1 DO BEGIN

     print,'Now doing round '+strtrim(string(j+1),2)

     tstart=systime(1)
     FOR i=0,nrebins DO c=rebin(a,N/2)
     tend=systime(1)
     timevar[j]=tend-tstart

     tstart=systime(1)
     FOR i=0,nrebins DO c=rebin(*b,N/2)
     tend=systime(1)
     timeptr[j]=tend-tstart
ENDFOR
end
--------------------------------------------------

Here we get:

;"array" case
IDL> print,timevar
       17.6973      17.6340      17.6237      17.7584      17.6499
       17.7070      17.6797      17.6858      17.6515      17.6766
;"*array" case
IDL> print,timeptr
       17.6719      17.7895      17.6816      17.6413      17.7822
       17.6556      18.0883      17.6746      17.6907      18.1122

No difference (motto: "dereferenced pointer behave like normal
variables" thus both passed by reference), and the performance
is the same as the fastet of the previous case.

Summarizing: rebin(*data.array) is indeed faster than
rebin(data.array), but rebin(*data.array), rebin(array)
and rebin(*array) have all the same speed.

Again, JD was indeed absolutely right. I just thought it was
nice to have an experimental confirmation... and it helped
me to grasp the issue.

Cheers,
Paolo

>  

Page 3 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php


>  As pointed out in the pointer tutorial
>  (http://www.dfanning.com/misc_tips/pointers.html), there is no
>  difference between pointer heap variables and ordinary variables,
>  except in how you access them.  Of course, that also means that a
>  structure member (or array element, etc.) of a dereferenced pointer
>  variable is (just like a member of an ordinary variable), still passed
>  by value:
>  
>   result = INTERPOLATE((*data).array, x, y, z) ; by value
>  
>  Here `data' is a pointer to a structure with member "array", which is
>  passed here by value.
>  
>  This equivalence also means that standard IDL variable tricks, like
>  re-assigning the memory contents of one variable to another without
>  copying, work just fine for pointer heap variables (and in between
>  plain old variables and pointer heap variables).
>  
>  JD
> 

Page 4 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

