Subject: Re: Pass by value and performance
Posted by Paolo Grigis on Fri, 16 Dec 2005 11:08:08 GMT

View Forum Message <> Reply to Message

JD Smith wrote:

> This isn't correct. De-referenced pointer variables (aka "heap"
variables) are passed by reference, just like regular variables (which
they are, really). E.g. in Ken's original example:

result = INTERPOLATE(*data.array, X, Y, z) ; by reference

>
>
>
>
>
> would indeed pass the pointer heap variable by reference and not by
> value. As such it would be much faster (for large arrays) than

> INTERPOLATE(data.array,x,y,z), which would require copying the full
> array to a local variable, and would be equivalent to a simple

> INTERPOLATE(array,X,y,z).

Since we are on the subject of performance, there's nothing like

a little benchmark to bring some light to shine upon the issue...

Let's try this (using rebin for simplicity):

Benchmark 1:

;initialize large arrays of data
N=2L"27

data={a:lindgen(N),b:ptr_new(lindgen(N))}
c=lonarr(N/2)

nrounds=10
nrebins=10

timevar=fltarr(nrounds)
timeptr=fltarr(nrounds)

:do benchmark
run
FOR j=0,nrounds-1 DO BEGIN

print,'Now doing round '+strtrim(string(j+1),2)
tstart=systime(1)

FOR i=0,nrebins DO c=rebin(data.a,N/2)
tend=systime(1)

Page 1 of 4 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4906
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=22032&goto=46786#msg_46786
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=46786
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

timevar[j]=tend-tstart

tstart=systime(1)

FOR i=0,nrebins DO c=rebin(*data.b,N/2)

tend=systime(1)
timeptr[j]=tend-tstart
ENDFOR
end

This compares the data.array vs. *data.array performance.
As correctly claimed by JD, there is indeed a difference

between the two approaches:

;"data.array” case
IDL> print,timevar

32.7094 34.0300 34.7631 33.0446 33.9109
34.2302 34.2145 33.8960 34.2056 34.2010
"*data.array" case
IDL> print,timeptr
18.1812 18.4961 18.5838 17.8924 18.4376
18.4548 18.0502 18.3959 18.7219 18.0366

However, if we don't have structures, is there a difference
between passing pointers and regular variables? How does
this compare with the structure case?

Benchmark 2:

;initialize large arrays of data
N=2L"27

a=lindgen(N)
b=ptr_new(lindgen(N))

c=lonarr(N/2)

nrounds=10
nrebins=10

timevar=fltarr(nrounds)
timeptr=fltarr(nrounds)

:do benchmark

Page 2 of 4 ---- Generated from

conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

.run
FOR j=0,nrounds-1 DO BEGIN

print,'Now doing round '+strtrim(string(j+1),2)

tstart=systime(1)

FOR i=0,nrebins DO c=rebin(a,N/2)
tend=systime(1)
timevar[j]=tend-tstart

tstart=systime(1)
FOR i=0,nrebins DO c=rebin(*b,N/2)
tend=systime(1)
timeptr[j]=tend-tstart

ENDFOR

end

Here we get:

'array” case
IDL> print,timevar
17.6973 17.6340 17.6237 17.7584 17.6499
17.7070 17.6797 17.6858 17.6515 17.6766
;"*array" case
IDL> print,timeptr
17.6719 17.7895 17.6816 17.6413 17.7822
17.6556 18.0883 17.6746 17.6907 18.1122

No difference (motto: "dereferenced pointer behave like normal
variables" thus both passed by reference), and the performance
is the same as the fastet of the previous case.

Summarizing: rebin(*data.array) is indeed faster than
rebin(data.array), but rebin(*data.array), rebin(array)
and rebin(*array) have all the same speed.

Again, JD was indeed absolutely right. | just thought it was
nice to have an experimental confirmation... and it helped
me to grasp the issue.

Cheers,
Paolo

Page 3 of 4 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

VVVVVVVVVVVVVVVYVYVYVYVYV

As pointed out in the pointer tutorial
(http://www.dfanning.com/misc_tips/pointers.html), there is no
difference between pointer heap variables and ordinary variables,
except in how you access them. Of course, that also means that a
structure member (or array element, etc.) of a dereferenced pointer
variable is (just like a member of an ordinary variable), still passed
by value:

result = INTERPOLATE((*data).array, X, Yy, z) ; by value

Here "data’ is a pointer to a structure with member "array”, which is
passed here by value.

This equivalence also means that standard IDL variable tricks, like
re-assigning the memory contents of one variable to another without
copying, work just fine for pointer heap variables (and in between
plain old variables and pointer heap variables).

JD

Page 4 of 4 ---- Generated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

