
Subject: Re: Recursive Function Program in IDL
Posted by b_gom on Wed, 14 Dec 2005 19:43:35 GMT
View Forum Message <> Reply to Message

David Fanning wrote:
> Does anyone have a handy recursive function that does something neat?
> Someone is asking, and I don't have time to work on this.

Here is a recursive algorithm for simplifying polyline vertices. See
'poly_simplify.pro' in the IDL user contributed library.
http://www.rsinc.com/codebank/search.asp?FID=307

Brad

;**************************************
pro simplifyDP,tol,vertices,j,k,mk
; This is the Douglas-Peucker recursive simplification routine
; It just marks vertices that are part of the simplified polyline
; for approximating the polyline subchain vertices[j] to vertices[k].
; Input: tol = approximation tolerance
; vertices[] = polyline array of vertex points
; j,k = indices for the subchain vertices[j] to vertices[k]
; Output: mk[] = array of markers matching vertex array vertices[]

	if (k le j+1) then return ; there is nothing to simplify

	; check for adequate approximation by segment S from vertices[j] to
vertices[k]
	maxi = j ; index of vertex farthest from S
	maxd2 = 0. ; distance squared of farthest vertex
	S = [[vertices[*,j]], [vertices[*,k]]] ; segment from vertices[j] to
vertices[k]
	u = S[*,1]-S[*,0] ; segment direction vector
	cu = ps_dot(u,u); segment length squared

	;test each vertex vertices[i] for max distance from S
	;compute using the Feb 2001 Algorithm's dist_Point_to_Segment()
	;Note: this works in any dimension (2D, 3D, ...)

	;Pb = base of perpendicular from vertices[i] to S
	;dv2 = distance vertices[i] to S squared

	for i=j+1,k-1 do begin
		;compute distance squared
		w = vertices[*,i] - S[*,0]
		cw = ps_dot(w,u)
		if cw le 0 then begin
			dv2 = ps_d2(vertices[*,i], S[*,0]);

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4641
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=22031&goto=46797#msg_46797
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=46797
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

			endif else begin
			if cu le cw then begin
				dv2 = ps_d2(vertices[*,i], S[*,1])
				endif else begin
				b = cw / cu;
				Pb = S[*,0] + b * u;
				dv2 = ps_d2(vertices[*,i], Pb);
				endelse
			endelse
		;test with current max distance squared
		if dv2 le maxd2 then continue
		;vertices[i] is a new max vertex
		maxi = i
		maxd2 = dv2
		endfor

	if (maxd2 gt tol^2) then begin ;// error is worse than the tolerance
;		split the polyline at the farthest vertex from S
		mk[maxi] = 1	; mark vertices[maxi] for the simplified polyline
;		recursively simplify the two subpolylines at vertices[*,maxi]
		simplifyDP, tol, vertices, j, maxi, mk ; // polyline vertices[j] to
vertices[maxi]
		simplifyDP, tol, vertices, maxi, k, mk ; // polyline vertices[maxi]
to vertices[k]
		endif
;		else the approximation is OK, so ignore intermediate vertices
	return
end

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

