
Subject: Re: compile a routine wich inlude a commun
Posted by JD Smith on Tue, 24 Jan 2006 20:55:35 GMT
View Forum Message <> Reply to Message

On Mon, 23 Jan 2006 21:03:27 -0700, David Fanning wrote:

> Paul Van Delst writes:
>
>> Well, then they're *not* pointers. They're, umm, "copy/move enablers".
>> :o)
>
> I have a feeling JD is going to come to our rescue and sort the whole
> thing out for us. At least, I *hope* so. :-)

IDL pointers are really properly called "references", and are similar
to references in many other languages, like Perl. In some ways, they
are more limited, since they can only reference a special pool of
variables which are otherwise inaccessible: the "heap variables".

In many languages, there are two ways to make a reference: a reference
can be made of a pre-existing normal variable, or a new "anonymous"
reference can be made, essentially referring to a freshly made heap
variable. IDL only supports on the latter method -- anonymous
references -- not the former method. There is no "address-of"
operator, so there is no way to take an address of an existing
variable, ala:

IDL> x=2
IDL> new_ptr=&x ;; No such thing

It just doesn't exist. Pointer heap variables and normal variables
will forever live their separate lives. You *can* cheaply re-assign
the actual memory pointed to by a regular variable to a pointer heap
variable, and visa versa, using the method David already outlined:

IDL> x=indgen(1000000L)
IDL> p=ptr_new(x,/NO_COPY) ;x now undefined
IDL> x=temporary(*p) ;*p now undefined

But at no time can you have more than one reference to a given normal
IDL variable (e.g. two ways to modify it). You can, of course, have
multiple references to each pointer heap variable (or none at all,
which is a great way to leak memory). This is covered in the pointer
tutorial.

One very basic fact about IDL pointers is that they are very heavy,
both in terms of compute time, and memory. Try this:

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=22170&goto=47112#msg_47112
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=47112
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

IDL> m=memory(/current)
IDL> a=ptrarr(10000L,/ALLOCATE_HEAP) & for i=0,10000L-1 do *a[i]=1L
IDL> print,(memory(/current)-m)/1024
 382
IDL> a=0
IDL> m=memory(/current)
IDL> a=replicate(1L,10000L)
IDL> print,(memory(/current)-m)/1024
 39

Using a pointer to store 10000 long integers (1L) takes approximately
10x as much memory as storing those 10000 integers directly in an
array. This is because even *empty* IDL variables take up around 35
bytes of memory. All this extra memory goes to all the additional
information associated with each and every IDL variable (mostly things
like variable type, array lengths, etc. -- see idl_export.h if you are
curious).

Here's how to see that:

IDL> a=0
IDL> m=memory(/current)
IDL> a=ptrarr(10000L,/ALLOCATE_HEAP)
IDL> print,float(memory(/current)-m)/10000L
 36.2015

So, "pointer" is really a bad name; "anonymous reference" would be a
better (if longer) name. The problem with "pointer" is it is comes
with no small amount of baggage from association with pointers in
languages like C. Unlike C pointers, which are very lightweight,
these "pointers" can't really be used for large, nested data
structures, without a fairly large memory and speed penalty (not to
mention the penalty that looping over many pointers entails). For
this reason, the best use of pointers in IDL is to provide persistent,
flexible storage for more typical IDL variable types, like large
arrays or structures, which can be accessed and operated on without
this penalty. Also unlike C pointers, IDL pointers can't be used to
access or write memory outside of the IDL address space, so in that
sense are much safer than C pointers.

JD

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

