Subject: Re: red noise?
Posted by Craig Markwardt on Sat, 11 Mar 2006 21:41:26 GMT
View Forum Message <> Reply to Message

"R.G. Stockwell" <no@email.please> writes:

- > Does anyone have a routine that calculates a red noise random time series?
- > (where red noise indicates a slope of 1/f^2 in the power spectrum)

>

- > I whipped up an autoregressive routine to do this, but the slope flattens
- > out
- > at the higher frequencies.

>

- > Pink noise would be nice as well. In fact, if someone had code to create
- > a time series of random variables with any arbitrary spectral slope, that
- > would
- > be great!

Sure, here is a function that does that, modulo a normalization, which you will have to diddle yourself. You enter the frequency and desired PDS, and the output is one realization of such a power spectrum, assuming random phases. [Of course there are an infinite number of realizations with the same PDS. The PDS discards 50% all phase information so you can't go backward to a unique time series from it alone.]

Craig

```
; PDS2LC
; FF - input frequency
; PDS - input PDS
; TOTRATE - input scale factor for output time series
; SEED - (optional) random number seed
; TIME - output time samples
; RETURNS: time series sampled at TIME bins
;
function pds2lc, ff, pds, totrate, seed=seed, time=tt

df = ff(1) - ff(0)
texp = 1/df
dt = 0.5/max(ff)
npts = n_elements(ff)

cpds = sqrt(pds) * exp(2d*!dpi*dcomplex(0,randomu(seed,npts)))
cpds = [cpds, 0, reverse(conj(cpds(1:*)))]
cpds = cpds * sqrt(texp*totrate/2)
```

```
cpds(0) = 0
 clc = fft(cpds, -1)
 lc = (double(clc) + totrate*dt)>0
 tt = n_elements(lc)*dt
 return, Ic
end
```

Craig B. Markwardt, Ph.D. EMAIL: craigmnet@REMOVEcow.physics.wisc.edu Astrophysics, IDL, Finance, Derivatives | Remove "net" for better response