## Subject: Re: Azimuth and Offset XYZ position correction Posted by Dave[2] on Fri, 24 Mar 2006 00:42:46 GMT

View Forum Message <> Reply to Message

Oops, your right I forgot the angle, we do have that information as an output. The scanner we use collects data at 250 measurements/second and scanes 270 degrees vertical and 360 horizontal.

Hypothetically speaking, if I was to feed ~5 million data points into the methodology you described, what are the chances of it choking? Or speed issues?

All in all though....great approach!!!

```
Dave
```

kuyper@wizard.net wrote:

- > Dave wrote:
- >> Hi All.

>>

- >> Quick question for anyone out there. I am looking to write a script and
- >> I'm wondering if anyone out there has done it already. I have a known
- >> precise position, say X and Y (UTM coordinate) in meters. From that
- >> precise position I am using a laser range finder to calculate a
- >> distance measurement from my original XY location. Along with this
- >> distance measure I obtain the exact azimuth.

>>

- >> What I would like to do is calculate the precise XY location at the end
- >> of the laser measurement.

>

- > You don't mention the elevation angle of the laser finder. Without that
- > information, the best we can do is assume that it's 0. I would imagine
- > that the distances you measure are much smaller than the radius of the
- > earth, which would allow the use of certain approximations, but I'm
- > going to use a method that will give accurate results for any distance
- > measured along a great circle on the surface of the earth all the way
- > up to half the circumference of the Earth. First, set up the utm map
- > projection:

>

utm = MAP\_PROJ\_INIT('UTM', CENTER\_LONGITUDE=clon, \$

CENTER LATITUDE=clat, ZONE=z);

>

- ;If you don't know what the zone is for your UTM projection, you
- > probably aren't using
- > ;one, and you can drop that argument. Next, convert your known position
- > to longitude
- > ;and latitude:

> Ionlat = MAP PROJ INVERSE(known, MAP STRUCTURE=utm);

```
>
> ;Next, set up an azimuthal equidistant projection centered at your
> known position:
>
 azeq = MAP_PROJ_INIT('Azimuthal Equidistant',
>
  CENTER_LONGITUDE=Ionlat[0], $
    CENTER_LATITUDE=lonlat[1]);
>
>
> :The next step depends upon how you define azimuth - there is a
> standard convention; ;unfortunately, there are many different mutually
> incompatible conventions. 0 degrees
> ;can represent either due North, or due East. A positive azimuth can
> represent either a
> ;clockwise or a counterclockwise rotation, as seen from above. I will
> assume that due
> ;North is 0 degrees, and that due East is +90 degrees. Then calculate
> appropriate
> :offsets:
> dx = distance*sin(azimuth*!DTOR)
 dy = distance*cos(azimuth*!DTOR)
>
  ;Now convert those offsets to a latitude and a longitude.
>
  newlonlat = MAP_PROJ_INVERSE(dx, dy, MAP_STRUCTURE=azeq);
>
>
  ;And finally, back to UTM XY coordinates:
>
> newxy = MAP PROJ FORWARD(newlonlat, MAP STRUCTURE=utm)
>
  There are other ways to do this, and some are more efficient, but this
> one hides all of the spherical trig inside the map projection code,
  allowing you to concentrate on other issues.
>
> There should be a standard function to do this; it's sort-of the
> inverse of map_2points(). However, I couldn't find one using the
> built-in help.
```