
Subject: Re: XSTRETCH and Library Lessons
Posted by JD Smith on Mon, 24 Apr 2006 20:54:21 GMT
View Forum Message <> Reply to Message

On Mon, 24 Apr 2006 19:36:29 +0000, Michael A. Miller wrote:

>>>> >> "David" == David Fanning <davidf@dfanning.com> writes:
>
>> This is really starting to be a pain.
>
> For our local libraries, I've had to define release tags for
> them. Then, every "application," which means "every thing that
> we expect to work the same way each time, gets started from a
> script that includes setting the IDL_PATH to include the proper
> release.

This is a very heavy handed approach, because it requires your
colleagues to use only your package in a given IDL session, and not
mix and match. It is, alas, an approach many people take.

Assuming library coders kept a (quasi-)fixed calling interface and
backward-compatible behavior for their routines (which is mostly true
of most of the big libraries), the best approach would be if:

1. External libraries are mentioned, by version number required, and
the user or site has the responsibility to install them.

2. Everyone uses likely-to-be-unique names for their
routines... object programming helps here (since it's not weird
seeming to hide everything behind a long unique class name).

3. Nobody messes with IDL_PATH via shell scripts or IDL scripts. Your
package should work no matter where it is on the path, and should not
make specific assumptions about where it is in the heirarchy.

4. No one redistributes other people's libraries, without first
renaming them (and getting permission).

The problem is, this system is only as strong as its weakest link.
It's one of these "trivial, if every last person cooperates" problems
that in practice just aren't. To solve this, other languages have
"name spaces" which are similar to, but separate from classes.
Imagine if at the top of your file full of routines you could say:

Package MyUniqueFooBarPackage

pro blah
..

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=22639&goto=48452#msg_48452
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=48452
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

end

...

Then the end user could:

use MyUniqueFooBarPackage;
blah,'mirfq'

etc. Then it wouldn't matter how many "blah's" there were, you'd
always be getting the 'blah' that you wanted. Note this works as well
for normal procedural programming as object-oriented programming. It
also makes it trivial to "fork" a version of a library, and
re-distribute. So you might have to change "Package AstroLib" to
"Package AstroLib-FooBar" and reference that package in your code instead.
Our only equivalent would be to go through and change all the routine
definitions and calls to routines in the library from routine to
foobar_routine. Not exactly maintainable.

Sadly, IDL doesn't really offer any help like this, so it's up to the
community to approximate, by convention, a system with some of these
properties.

JD

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

