
Subject: Re: XSTRETCH and Library Lessons
Posted by mmiller3 on Mon, 24 Apr 2006 19:36:29 GMT
View Forum Message <> Reply to Message

>>>> > "David" == David Fanning <davidf@dfanning.com> writes:

 > This is really starting to be a pain.

For our local libraries, I've had to define release tags for
them. Then, every "application," which means "every thing that
we expect to work the same way each time, gets started from a
script that includes setting the IDL_PATH to include the proper
release. (This can be a shell script or an IDL script.) To
handle releases, I use CVS[1] and release tags. This problem is
not intrinsically different than release/version-ing problems
with any other language. In any case it requires some
discipline. Compared to getting some of my colleagues to
properly name files[2], this is a piece of cake!

Here's how I handle it... When ever I make a release, I commit
my changes to the CVS repository and create a new release tag,
usually using a sequential, increasing number, say 2-72. Then I
check out that release and put it a directory named using that
tag, say mylib-2.72. If I want that to be the default release
for anyone using release 2.x, I can link mylib-2.72 to mylib-2.
If I want that to be the default release for anything that
doesn't care about versions (pretty rare!), I can link mylib-2.72
to mylib.

This is purely patterned after what I see in my /usr/lib
directories, and can, I think, be done under any OS. This can be
done with Subversion[3] as well as CVS, or any other version control
system. (Note that version is a different thing from release.
Version means version of a file - release means snap shot of a
collection of files).

Here's how I would do this for a collection of codes called
myIDLlib

0 - make sure my version control system is set up (in this case CVS)

1 - get a copy of myIDLlib and put it into a directory that I've
cleverly named myIDLlib

2 - change directory to myIDLlib. If there is cruft in this
directory that I don't want in the repository, delete it now.

3 - add everything to the repository:

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4183
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=22639&goto=48455#msg_48455
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=48455
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 > cvs import -m "Imported sources" myIDLlib yoyo start

4 - Make the initial release tag. Tags are not allowed to have
names with periods in them, so I use dashes instead:

 > cvs tag rel-1-0

5 - Move this directory to where ever I store production code and
name it myIDLlib-1.0
 > cd ..
 > mv myIDLlib myIDLlib-1.0

6 - set up application scripts to have myIDLlib-1.0 in the IDL_PATH

7 - Now when I want to change my code, I check out a fresh copy:
 > cvs checkout myIDLlib

8 - I corrupt it/change it/improve it...

9 - I check in my changes frequently so I can undo them as
needed...

10 - repeat 8 and 9 until I decide I'd better hang onto a snap
shot of this before I get myself into deeper trouble.

11 - Make a new release tag:
 > cvs tag rel-1-1

12 - Move this directory to myIDLlib-1.1
 > cd ..
 > mv myIDLlib myIDLlib-1.1

13 - change the start up scripts for applications that need the
latest and greatest. Applications that need older releases
already have the correct release in their IDL_PATH, so nothing
needs to be changed.

Regards, Mike

[1] http://www.nongnu.org/cvs/
[2] http://www.dfanning.com/tips/namefiles.html
[3] http://subversion.tigris.org/

--
Michael A. Miller mmiller3@iupui.edu
 Imaging Sciences, Department of Radiology, IU School of Medicine

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

