
Subject: XSTRETCH and Library Lessons
Posted by JD Smith on Fri, 21 Apr 2006 20:55:42 GMT
View Forum Message <> Reply to Message

XSTRETCH is pretty fun. I especially like the curve plot for
non-linear (but why not draw it for linear as well?). I downloaded
the new version, and immediately had problems: the histogram didn't
show up for me any longer, as it did in older versions. Just a gray
background. The min/max lines showed, and could be interacted with,
but no histogram.

Surely, I thought to myself, the good Dr. Fanning would not distribute
such a mal-configured tool. So I looked into a bit deeper. It turns
out, among the bread and butter COYOTE routines like FSC_COLOR and
TVIMAGE, and FSC_FILESELECT, I had 3-4 copies of each of these on my
IDL_PATH, included directly in other libraries, like PAN, ICG, CM,
etc. Presumably you have since updated those files, and a standard
load path shadowing issue (aka name space collisions --- the wrong
routine of the same name getting called) caused XSTRETCH to break in a
most unilluminating way.

For all you library distributors out there... I think a good rule of
thumb is, if you'd like to pluck a routine from a random library, and
distribute it with your own (after getting permission of course), you
should rename it by adding a unique additional prefix, so, e.g.,
ICG_TVIMAGE, instead of plain old TVIMAGE. This saves your users from
future changes to the tool breaking your code, and saves the other
library maintainer from fielding all kinds of spurious "your code
doesn't work" complaints that arise from simple load path shadowing.

An even better solution, in my opinion, is not to include routines
from other libraries at all, but just state in your install notes:

 FOOLIB requires the COYOTE library, version X.Y or later, available
 at

This puts a higher burden on your users to install another library,
and on yourself to make sure that future changes to that library don't
break your tools (i.e. to migrate your tools along), but the end
result is much cleaner, and bug fixes and feature additions then get
communicated back to the original library maintainer, so that everyone
benefits. The worst offenders are those that "snapshot" another
entire library and bundle it directly in their own. This severely
pollutes the name-space, and for little added benefit. Why not just
provide a pointer to the additional library?

The final solution, if you feel your users are too lazy to sort any of
this out, is just to compile a .sav file of your entire library, and

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=22650&goto=48472#msg_48472
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=48472
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

distribute that. These don't suffer name space collisions. As long
as they are loaded first, their versions of, e.g., TVIMAGE, will trump
any others, and since they have to explicitly or implicitly loaded,
the true-blue TVIMAGE would continue to load and work as expected in
sessions where your tool isn't being used.

JD

P.S. IDLWAVE can help you identify offenders. Scan a your full
library into an IDLWAVE library catalog, and then select
IDLWAVE->Routine Info->[Load Path Shadow] Check Everything. You'll
get a report on multiply defined routines, sorted in the order they
will most likely be loaded. RSI even re-defines the same routine a
few times in it's !DIR/lib routines!

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

