Subject: Re: interpolation question

Posted by JD Smith on Fri, 21 Apr 2006 01:57:52 GMT

View Forum Message <> Reply to Message

On Wed, 19 Apr 2006 21:25:15 -0700, chen123.dian wrote:

- > Hi, I want to use nearest-neighbor method to interpolate 2-D data.
- > After reading some posters here and idl references, I am still confused
- > how to do. I use a 1-D data to explain my problem. For example, there
- > is x-arrary, [1.0, 2.9, 5.1], the corresponding y-arrary is [10, 50,
- > 80]. Now we want to get the y-values at x-value [0.5, 2.6, 3.1, 4.6]
- > using nearest-neighbor method. The result of y-values should be [10,
- > 50, 50, 80]. Can the IDL function of interpolate.pro do this work? The
- > input of interpolate.pro, X,Y,Z, arrays of numeric type containing the
- > locations for which interpolated are desired, is very confuse. Is there
- > any function like the function interp1 (interp2 for 2-D data) for
- > matlab? Like, y_values=interp1(x, y, x-values, 'nearest', 'extrap').

Doesn't it depend on how your 2D array is sorted? Are the values along rows and columns always monotonically increasing, e.g.:

0.1 1.2 2.4 0.2 1.3 2.5

Otherwise, the problem is undefined.

That said, I think you are not asking a value lookup problem at all, but a simple 2D interpolation on a regular grid, where instead of linear nearest neighbor intepolation, you want "plain" nearest neihbor. VALUE_LOCATE can do this for you, assuming "nearest in x" and "nearest in y" are separable.. Let 'yarray' be your data array you'd like to intepolate on, and 'curve_x' be the monotonic, but non-regular grid of x positions, and 'curve_y' similarly, e.g.:

IDL> yarray=randomu(sd,100,100)
IDL> curvex=findgen(100)^2
IDL> curvey=alog10(1.+findgen(100))

such that in the 2D 'yarray', all rows have the same X vector coordinates 'curvex', and all the columns the same Y vector 'curvey'. Now you have two vectors describing the X,Y positions in this funny space where you would like nearest neighbor interpolates:.

IDL> x=(randomu(sd,10)*100)^2

IDL> print,x

6544.61 2552.47 2239.70 9695.07 144.029 919.768

933.261 3231.17 151.407 761.378

```
IDL> y=alog10(1.+randomu(sd,10)*100)
IDL> print,y
   1.63828
                         1.80391
                                    0.983095
                                                1.26320
              1.52555
                                                           1.86245
   1.79494
              1.67543
                         1.89285
                                    1.37616
IDL> xpos=value_locate(curvex,x)
IDL> xpos=round(xpos+(x-curvex[xpos])/(curvex[xpos+1]-curvex[xpos]))
IDL> ypos=value_locate(curvey,y)
IDL> ypos=round(ypos+(y-curvey[ypos])/(curvey[ypos+1]-curvey[ypos]))
IDL> interp=yarray[xpos,ypos]
JD
```