Subject: Re: 6.3 reactions?
Posted by JD Smith on Tue, 09 May 2006 18:54:35 GMT

View Forum Message <> Reply to Message

On Tue, 09 May 2006 00:23:57 -0400, Richard G. French wrote:

> | hope that someone who really understands all of this IDL Bridge stuff

> and who doesn't use objects for every programming task will provide a

> simple description for civilians of just what this capability can do for

> the everyday user, and what it can't do. I'm having trouble figuring out

> whether this is a cool feature that I'd be crazy not to employ, an easy

> way to try to do parallel processing, or something that would require me
> to reprogram everything | do to obtain the leverage from multiple

> processors. So, all of you Ernest Hemingways out there, how about some
> simple, declarative sentences with an example or two of how this feature
> works and why it is a Good Thing. Many of us will be grateful!

Having not used it, as far as | can tell it's a convenient wrapper

around pre-existing functionality. You could already, with IDL

versions prior to 6.3, spawn another IDL process, setup a shared

memory channel of communication between them, copy variables back and
forth, and use an inter-process communication method, with special
communication code running on each side, to notify the parent process
when the child process is done with processing. Then you could read

back some results, and make use of them. It was just a big pain.

The new Bridge just makes that all easy for you... no need to setup
shared memory and/or some other access (like a semaphore) to
communicate back and forth, no need to poll to find out if a process

is done with some calculation. Just use Get/Set to send variables (by
copying) back and forth through shared memory, use callbacks to get
notified when processing is complete, etc. This would be useful if you
have a GUI front-end, which you'd like to keep responsive while
another IDL process chugs away on some big calculation. Basically, if
you like background processing of widget events, you'll love the
bridge, because you can have *anything* be background processed.

| don't know what the overhead for starting this sub-process and setting
up shared memory is, so it may only pay for really intensive calculations.
It would also be a potential speedup if you have a problem which
doesn't make use of large enough arrays (a few hundred thousand
elements) to benefit from IDL's native threading on multi-processor
machines. Again, the key factor determining how useful this will be

is the overhead involved in setting up the child process. Does it

really go through the entire rigmarole of contacting the license

server, expanding and searching the IDL_PATH, etc., establishing the
graphics devices, etc.? If so, it will be too heavy-weight for

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=22676&goto=48671#msg_48671
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=48671
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

speeding up smaller scale operations, but of course will be useful for
those 1 min or longer operations which otherwise would have blocked.

One other factor to consider: | presume that if you had a large pile

of data in process A, and you wanted to spawn sub-process B to work on

that data in the background, you'd end up with *two* copies of that

data in memory, one each in the space of processes A and B, unless you
specifically remove that data on one side, then the other (e.g. with
TEMPORARY). You thought preventing memory leaks was hard with one IDL
process...

JD

Page 2 of 2 ---- Generated from conp. |l ang. i dl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

