Subject: Re: Precision Problem
Posted by Paul Van Delst[1] on Mon, 24 Jul 2006 19:00:03 GMT
View Forum Message <> Reply to Message

DMac wrote:

- > Hello All,
- > Using IDL version 6.2 on a Windows XP machine I am reading in a set of
- > coordinates from a binary file (it is LiDAR data stored in LAS Version
- > 1.0 format) stored in UTM NAD83 Zone 11 and these points are stored as
- > 4 byte long integers in the binary file. The coordinates are stored
- > in the binary file with an offset such that they need to be divided by
- > 100 to obtain the actual coordinates. The binary file is read into a
- > heap variable (Data below). The X and Y coordinates are than written
- > from the heap variable into a double precision array as follows:

```
    x = dblarr(Num_pts)
    x = TEMPORARY(data.x*1.000e-002)
    y = dblarr(Num_pts)
    y = TEMPORARY(data.y*1.000e-002)
```

That is going to give you single precision arrays.

```
IDL> x=dblarr(num_pts)
IDL> x = TEMPORARY(data.x*1.000e-002)
IDL> help, x
X FLOAT = Array[100]

You need to do
IDL> x = TEMPORARY(data.x*1.000d-002)
IDL> help, x
```

DOUBLE = Array[100]

i.e. using 1.000d-002 rather than the single precision literal 1.000e-002.

I don't think the TEMPORARY() is doing anything either since the argument is an expression which is pretty much temporary already.

All you need to is:

Χ

```
scale_factor=1.0d-02
x = data.x*scale_factor
y = data.y*scale_factor
```

to get the double precision arrays at the required size.

As to why your final "y" array is bogus, I don't know. Maybe data.y is somehow buggered up prior to your scaling?. My little tests gave the expected result.

Maybe on Windows if you do a TEMPORARY(data.x*1.000e-002) is whacks the entire structure? (I hope not)

paulv

Paul van Delst Ride lots. CIMSS @ NOAA/NCEP/EMC Ph: (301)763-8000 x7748

Eddy Merckx

Fax:(301)763-8545