
Subject: Re: POLY_2D inconsitent interpolation
Posted by Tom S. on Tue, 08 Aug 2006 15:13:59 GMT
View Forum Message <> Reply to Message

Oops! I may be wrong. Specifying MISSING=0 just makes the white pixels
go away. Anyway, this does seem to be a bug, rather than a feature,
because specifying a zero-pixel border should create more
rounded-looking edges anyway.

-Tom

Tom S. wrote:
> Very odd. However, I think the problem is due to the algorithm
> accessing image indices that are out of bounds. Ordinarily the
> algorithm extrapolates values for the out-of-bounds pixels, but perhaps
> this extrapolation is causing the undesired results.
>
> One can remedy the problem (at least with your example) by specifying
> MISSING=0. This means that missing array values will all have a value
> of zero. This ends up removing the discontinuities.
>
> Regards,
> Tom
>
> Randolf Klein wrote:
>> Hi,
>>
>> I found a strange behavior of POLY_2D. The resulting images are shifted
>> by 1/2 pixel of the original image when using nearest neighbor or some
>> interpolation method. Searching the web for this issue, I found the
>> following old post, but it had no replies. The code from this post
>> demonstrates this strange behavior very good still in IDL version 6.3
>> (except that I do not see any difference any more between the bilinear
>> and the cubic spline). Please, comment if this is a feature or a bug and
>> may be someone can suggest workarounds especially for hastrom (from the
>> astro library) where poly_2d is used.
>>
>> Thanks
>> RK
>>
>>
>> --------------here the mentioned old post's url-----------------
>> http://groups.google.com/group/comp.lang.idl-pvwave/browse_t
hread/thread/c780ba42980c6a04/6dc30561bbaeb17b?lnk=gst&q
=poly_2d&rnum=1#6dc30561bbaeb17b
>> --------and here is the post itself-----------------------------
>>

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5794
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=23128&goto=49675#msg_49675
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=49675
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> From:		Craig DeForest
>> Date:		Fri, Aug 21 1998 12:00 am
>> Email: 		Craig DeForest <junkmail-...@urania.nascom.nasa.gov>
>> Groups: 		comp.lang.idl-pvwave
>>
>>
>> I found a rather interesting bug in poly_2d, the IDL built-in to
>> do scaling of image data. The bilinear and spline interpolation
>> features are designed inconsistently with the sampling feature. The
>> bug is both in 4.x and 5.x versions of IDL.
>>
>> Sampling works correctly: when scaling an original image by an integer
>> factor, each pixel is scaled an integer number of times. But bilinear
>> and cubic interpolation do not work the same way -- there is a
>> 1/2-pixel offset in the output compared to linear sampling.
>> Apparently, the interpolation algorithms wrongly regard each (old)
>> pixel's value as resident at the *corner* of the (old) pixel, and not
>> at the *center* of the (old) pixel.
>>
>> Here's some example code:
>> -- ----------
>> pro break_poly_2d
>>
>> ; Generate a symmetrical image of a crosshairs
>> a = bytarr(9,9)
>> a(4,*) = 255
>> a(*,4) = 255
>> window,0,xsiz=9,ysiz=9
>> tv,a
>>
>> ; Scale it up by a factor of 10 using the sampling algorithm
>> ; The output looks nice so far...
>> b = poly_2d(a,[0,0.1,0,0],[0,0,0.1,0],0,90,90)
>> window,1,xsiz=90,ysiz=90
>> tv,b
>>
>> ; Scale it up by a factor of 10 using the bilinear interpolation
>> ; algorithm. Shudder at the lack of consistency.
>> c = poly_2d(a,[0,0.1,0,0],[0,0,0.1,0],1,90,90)
>> window,2,xsiz=90,ysiz=90
>> tv,c
>>
>> ; Scale it up by a factor of 10 using the bilinear interpolation
>> ; algorithm, but offset to account for the pixel-corner bug.
>> ; Recoil in horror at the sloppy treatment of the boundary condition.
>> d = poly_2d(a,[-0.5,0.1,0,0],[-0.5,0,0.1,0],1,90,90)
>> window,3,xsiz=90,ysiz=90
>> tv,d

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>
>> ; Scale it up by a factor of 10 using the cubic spline.
>> ; Laugh that at least it's broken consistently with the
>> ; bilinear case.
>> e = poly_2d(a,[-0.5,0.1,0,0],[-0.5,0,0.1,0],2,90,90)
>> window,4,xsiz=90,ysiz=90
>> tv,d
>>
>> end
>> -- ----------
>>
>> The best one can do is to say something inane like:
>>
>> P1=P
>> P1(0) = P1(0)-0.5*keyword_set(method)
>> Q1=Q
>> Q1(0) = Q1(0)-0.5(keyword_set(method)
>> out = poly_2d(in,P1,Q1,method,xsize,ysize)
>>
>> instead of
>>
>> out = poly_2d(in,P,Q,method,xsize,ysize)
>>
>> but even then you get wacky results near the lower and left hand
>> boundaries of <out>.
>>
>> --
>> I work for Stanford, *NOT* the government. My opinions are my own.
>>
>> If you're a robot, please reply to the address in the header.
>> If you're human, try " zowie (at) urania . nascom . nasa . gov "

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

