
Subject: Re: slow processing of my k-nearest neighour code
Posted by humphreymurray on Tue, 15 Aug 2006 02:17:44 GMT
View Forum Message <> Reply to Message

Wow, that's a great idea to remove most of the code from the loops.
The only problem is that the code doesn't run on data of any usable
size. I get a "Unable to allocate memory: to make array" error on this
line of code:

training_duplicates = REBIN(TRANSPOSE(training_data), $
 num_attributes, num_training_elements, num_testing_elements)

This code works fine with really small data, but when I'm trying to
classify a 256x256 pixel image, it is trying to create an array of
dimensions: [15, 400, 65536]. According to my math, this would be
about 390 million elements, and assuming that each element takes 1 byte
of memory, it would use 390mb of ram. My machine at uni only has 512mb
of ram, so I will try this code at home tonight, where I have 1gb of
ram.

Would the way to fix this problem be to split the number of training
pixels up, and process them in small groups? For example, analyse a
row of pixels at a time?

Humphrey

kuyper@wizard.net wrote:
> humphreymurray@gmail.com wrote:
>> Hi,
>>
>> I am trying to implement a k-nearest neighbout classifier in IDL. The
>> problem is that it's running really, really slow. After reading
>> through much of the IDL documentation, I have managed to increase it's
>> processing speed significantly, by reordering my arrays to make better
>> use of contiguous memory. However it still runs quite slow. Can
>> anybody help me make this more efficient?
>>
>> Cheers, Humphrey Murray
>>
>>
>> ; knn_classifer
>> ; This code preforms a k-nearest neighbour classification.
>> ; - training_data :: A 2d array containing the training data [Image
>> data, different bands]
>> ; - training_classes :: A 1d array containing the classes that
>> represent the data [class value (integer)]
>> ; - testing_data: A 2d array with the same dimensions as training_data,

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5841
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=23159&goto=49768#msg_49768
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=49768
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> which contains the data to be classified
>> ; - k: The number of nearest neighbours to look at
>> ; - result: The result of the classifier, a 1d array.
>>
>> pro knn_classifier, training_data, training_classes, testing_data, k,
>> result
>>
>> ; Find out the sizes of the input arrays
>> testing_data_sizes = size(testing_data)
>> training_data_sizes = size(training_data)
>>
>> ; Check to make sure that the input arrays are of the correct
>> dimensions, and contain the same number of attributes
>> IF training_data_sizes[0] NE 2 THEN Message, 'The training data
>> must be an array of 2 dimensions.'
>> IF testing_data_sizes[0] NE 2 THEN Message, 'The testing data must
>> be an array of 2 dimensions.'
>> IF testing_data_sizes[2] NE training_data_sizes[2] THEN Message,
>> 'The training and testing data must have the same number of attributes
>> (i.e., the arrays need to be the same size in their first dimension)'
>>
>> ; Find out how many elements there are to test
>> num_testing_elements = testing_data_sizes[1]
>> num_training_elements = training_data_sizes[1]
>>
>> ; Find out the number of attributes
>> num_attributes = training_data_sizes[2]
>>
>> ; A temporary storage spot
>> squared = make_array(num_training_elements, num_attributes)
>> euclidean = make_array(num_training_elements)
>>
>> ; Create an array for storing the results
>> result = make_array(num_testing_elements, /INTEGER)
>> temp_testing_data = make_array(num_training_elements,
>> num_attributes)
>>
>> ; calculate the distances for each training item
>> for i = long(0), num_testing_elements - 1 do begin
>>
>> ; Calculate the squared distance for each attribute.
>> squared = make_array(num_training_elements, num_attributes)
>> for attrib = 0, num_attributes-1 do begin
>> squared[*,attrib] = (testing_data[i, attrib] -
>> training_data[*,attrib])^2
>> endfor
>>
>> ; Calculate the sums of the squared differences accross the

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> attributes
>> euclidean = sqrt(total(squared, 2))
>
> You can move a large portion of the above code outside both loops,
> simplifying and presumeably speeding up your program:
>
> ; A temporary storage spot
> training_duplicates = REBIN(TRANSPOSE(training_data), $
> num_attributes, num_training_elements, num_testing_elements)
> testing_duplicates = TRANSPOSE(REBIN(TRANSPOSE(testing_data), $
> num_attributes, num_testing_elements, num_training_elements),
> [0,2,1])
> euclidean = sqrt(TOTAL((training_duplicates-testing_duplicates)^2,
> 1))
>
> However, I can't figure out how to remove the sort from the loop.
> Therefore, you'll still need:
>
>> ; Calculate the distances and sort the indexs of these
>> sorted_indexs = sort(euclidean)
>
> With one minor change:
>
> sorted_indexs = sort(euclidean[*,i])
>
>> ; Create an array that contains the classes of the items with
>> the k
>> k_closest_classes = training_classes[sorted_indexs[0:k-1]]
>>
>> ; Store the mode (classes with the highest frequency)
>> result[i] = mode(k_closest_classes)
>>
>> endfor
>>
>> end
>
> I hope that helps.

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

