Subject: Re: Array sorting by row
Posted by JD Smith on Tue, 22 Aug 2006 20:48:59 GMT

View Forum Message <> Reply to Message

On Fri, 18 Aug 2006 11:12:36 -0700, Ed Hyer wrote:

Try this one out for size (or rather, for speed):
a=[[4,2,0,5],[9,0,1,5],[0,4,2,1],[1,2,3,4]]; or any 2-d array
sz=size(a,/dimensions); get dimensions
cols=rebin(indgen(sz[0]),sz[0],sz[1]); label points by column
h2=hist_nd(transpose([[a[*]],[cols[*]]]),[1,1],reverse_indic es=ri2)

; syntax is a wee messy, but this is JD Smith's beautiful HIST_ND()
function:

; http://www.dfanning.com/documents/programs.html#HIST_ND
starti=n_elements(h2)+1; beginning of indices in $RI2
sorted=transpose(reform(a[ri2[starti:*]],sz[0],sz[1]))

VVVVVVVYVYVYVYVYV

This one should be blazing fast right up to memory limits.

Interesting method. However, a (usual sort of) problem occurs if your
input array is sparse, e.g.:

a=[[4,2,0,5],[9,0,1,5],[0,4,2,1],[1,212121212L,3,4]]

In this case, you will quickly fill up memory with countless zeroes in
a nearly empty 2D histogram.

A related method which avoids this sparseness issue, and allows
arbitrary floating point numbers, is as follows:

sz=size(a,/DIMENSIONS)

s=sort(a)

h=histogram(s mod sz[0], REVERSE_INDICES=ri)
sorted_inds=transpose(reform(s[ri[sz[0]+1L:*]],sz))
sorted=a[sorted_inds]

Basically, you sort the entire array, and then bin the sorted list by

column number using HISTOGRAM. The histogram is guaranteed to contain
only as many bins as you have columns in your input array, which is a

small number even for very large arrays. This means the algorithm

offers a constant runtime depending only on array size.

There's one other variant possible. If you know in advance your
values are not sparsely distributed (e.g. at least 1 in 10 number are
represented, on average), you can see further speedup (depending on
your memory resources) by changing:

s=sort(a)

Page 1 of 3 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=23173&goto=49852#msg_49852
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=49852
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

in the above prescription to

h=histogram(a,REVERSE_INDICES=ri)
s=ri[n_elements(h)+1:*]

i.e. just sort directly using HISTOGRAM. This really has no business
being this much faster than SORT, but it is. Here are some timings
comparing the three methods:

; 100x100 array, on average every number represented (1 in 1 sparse)
HIST_ND method: 0.17189288

SORT+HISTOGRAM method: 0.0094909668
HISTOGRAM+HISTOGRAM method: 0.0018260479

; 500x500 array, 1 in 1 sparse

HIST_ND method: 10.859160
SORT+HISTOGRAM method: 0.37013221
HISTOGRAM+HISTOGRAM method: 0.17653203

; 500x500 array 10 in 1 sparse (numbers repeated 10 times on average)
HIST_ND method: 1.3364871

SORT+HISTOGRAM method: 0.37795591
HISTOGRAM+HISTOGRAM method: 0.10262513

; 500x500 array, 1 in 10 sparse (histogram only 10% filled)
HIST_ND method: <array too large to allocate>
SORT+HISTOGRAM method: 0.35415411
HISTOGRAM+HISTOGRAM method: 0.35962415

And, just to show that in some small part of parameter space the first
two are similar.

; 2000x2000 array, 100 in 1 sparse (numbers repeated 100 times on average)
HIST_ND method: 11.669180

SORT+HISTOGRAM method: 10.190833

HISTOGRAM+HISTOGRAM method: 2.4765849

And to really puts a hurt on the pure HISTOGRAM based methods, by
cranking up the sparseness (HIST_ND is already out of its league):

; 1000x1000 array, 1 in 5 sparse
SORT+HISTOGRAM method: 2.0481181
HISTOGRAM+HISTOGRAM method: 1.2417412

; 1000x1000 array, 1 in 10 sparse
SORT+HISTOGRAM method: 2.0289030
HISTOGRAM+HISTOGRAM method: 1.6590791

Page 2 of 3 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; 1000x1000 array, 1 in 50 sparse
SORT+HISTOGRAM method: 2.0890758
HISTOGRAM+HISTOGRAM method: 4.4074631

; 20002000 array, 1 in 50 sparse
SORT+HISTOGRAM method: 10.333820
HISTOGRAM+HISTOGRAM method: <array too large to allocate>

So there you have it. These results are highly reminiscent of an old
post giving the various trade-offs using SORT and HISTOGRAM for list
matching and set operations, see
http://www.dfanning.com/tips/set_operations.html. The advice offered
is so similar, I'll quote myself:

"So, if you want a generic solution which works in the same n log(n)
time using a fixed amount of memory for any type of integer input
data, sparse or not, use SORT. If you know your data is hon-sparse
(better than 1 in 10 say), you can see a speedup of a few with
HISTOGRAM."

JD

Page 3 of 3 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

