
Subject: Re: border around draw widget
Posted by Laurens on Wed, 04 Oct 2006 09:18:53 GMT
View Forum Message <> Reply to Message

Rick Towler wrote:
> I think we have strayed way off on this one... While JD's suggestion is
> clever, from a usability perspective I don't think it is as effective as
> a colored border or a color shift of the image. And adding a border is
> trivial.
>
> If you haven't done this already, you'll want all of your draw widgets
> to share the same click event handler. You mention in your original
> post that your displaying gamma-scans. I'll assume these are images of
> some sort. I'll further assume you are using direct graphics and are
> displaying the image using TV (I know in reality you are using one of
> David's or Liam's improved versions).
>
> The one thing I don't know is how you are storing your application data.
> You are going to need to keep the selection state of each draw widget
> and a copy of the image displayed in the widget. In my example I put
> them in a structure with the fields "image" and "selected" and store
> that in each draw widgets UVALUE. You may already have this data stored
> someplace else.
>
> pro drawClick_event, ev
>
> WIDGET_CONTROL, ev.id, GET_UVALUE=thisData, /NO_COPY
> WIDGET_CONTROL, ev.id, GET_VALUE=thisWindow
>
> if (thisData.selected) then begin
> ; window is currently selected, deselect
> WSET, thisWindow
> TV, thisData.image
> thisData.selected = 0
> endif else begin
> ; window is currently not selected
> WSET, thisWindow
> OPLOT, [0,0,1,1,0], [0,1,1,0,0], COLOR=255, THICK=4
> thisData.selected = 1
> endelse
>
> WIDGET_CONTROL, ev.id, SET_UVALUE=thisData
>
> end
>
>
> You'll notice that the border isn't perfect but it is close. Also,
> you'll want to modify the COLOR value accordingly.

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5737
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=23382&goto=50535#msg_50535
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=50535
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
> -Rick
>
>
>
> Laurens wrote:
>> JD Smith wrote:
>>> On Wed, 27 Sep 2006 23:35:34 +0200, Laurens wrote:
>>>
>>>> Thanks very much for that explanation!
>>>> Could you tell me how to make such a widget-object? It sounds like
>>>> something I was already thinking about...
>>>
>>> It sounds fancier than it is. It's basically an object, which:
>>>
>>> 1. Sets up a widget heirarchy in the normal way (usually in its Init
>>> method).
>>> 2. Saves its "state" information not in a structure in a UVALUE but in
>>> the class data itself (e.g. self.*).
>>> 3. Calls XManager (often, but not necessarily, in its Init method) to
>>> generate events on that widget heirarchy.
>>> 4. Uses the trick I outline to inject the events flowing forth from
>>> the widgets created to some class method (often named "Event").
>>>
>>> The main advantages of this method:
>>>
>>> 1. You get state information "for free", quite nicely mapped to class
>>> data.
>>> 2. You automatically avoid common blocks for state info, with their
>>> associated collision risks if multiple identical widgets run at the
>>> same time.
>>> 3. You are never left with state information "in the air", if you use
>>> /NO_COPY to be efficient when retrieving your state structure from
>>> a UVALUE. This greatly aids debugging, since crashes to the code
>>> usually can be recovered from with a simple RETALL.
>>> 4. You quickly realize that the normal event flow embodied in "normal"
>>> widget prgramming is limiting, and can roll your own communication
>>> among objects that suits your needs. This is particularly useful
>>> if you have many different perhaps unrelated application components
>>> that need to communicate with eachother.
>>>
>>> A schematic usage would be:
>>>
>>> oDraw=obj_new('SelectableDrawPane',base)
>>>
>>> which would place a new compound widget into base. It might implement
>>> some methods "Select" and "DeSelect", or you could have it trap the
>>> selection "clicks" and automagically select/deselect itself. Once you

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>> have the apparatus in place, you can then have fun implementing other
>>> methods for your object, drawing and erasing, etc.
>>>
>>> I should note that none of this is necessary to use the "base on top
>>> of a base" trickery I outlined before, it just makes it easier and more
>>> powerful.
>>>
>>> JD
>>>
>> err...well, I'll try hehe; If I understand it correctly, this implies
>> writing code in the GUI.pro file, with as disadvantage that I can't
>> use my .prc file to regenerate GUI?
>> That's some strange behaviour I noticed earlier...if you change
>> position of a widget and save the GUI, all self-written code is simply
>> gone :S
>>
>> If I've created that object, where could I change its structure, like
>> the select and deselect functions?
>> Sorry for the quite explicit way of asking, but hey I'm not as
>> experienced in writing IDL as you guys huh (will one ever be haha), so
>> I'm just trying to learn from it...
>>
>> Thanks though for what you've brought up on ideas so far...
>>
>> Laurens
>>
>> Cheers David :) It's quite funny, I live in the Netherlands and when
>> we use the word "cheers", its when we take a beer haha; so every
>> "cheers" underneath your msgs lets me think you're having quite a good
>> time lol.
Never mind, it already works :) Thnx a bunch!

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

