Subject: Re: A defense of decomposed color
Posted by JD Smith on Tue, 31 Oct 2006 20:33:38 GMT

View Forum Message <> Reply to Message

On Mon, 30 Oct 2006 21:17:23 -0700, David Fanning wrote:

>
>
>>
>>
>>

>
>
>
>
>
>

Th

JD Smith writes:

| wonder if those of you using decomposed color can persuade me of its
utility. Though color tables are perfect for image visualization,

they are wanting for "system" colors for plot symbols, overlays, etc.

It's frustrating to keep track of them, and different apps have

different conventions, and can step on each other's feet, causing
various undesirable effects.

Two words, JD: TVIMAGE and FSC_COLOR.

The point of using decomposed color is that you can load your
image color tables, use all 256 colors all the time, and *still*

use any color you like for plots and annotation, WITHOUT HAVING
TO SWITCH ANYTHING.

anks for your thoughts, David. That's the main attraction to me.

You *do* have to switch the decomposed state, but if it's handled
transparently, no one is the wiser.

>
>
>
>

At least you can if you use TVIMAGE (or, alternatively, Liam's
IMGDISP) and FSC_COLOR. | can't remember the last time | switched
color models, and I haven't known (or cared) what color model I've
been using for a least the last five years.

I'm a believer in the power of those tools, but was more interested in

ge

neral suggestions for people who want to leverage this

all-things-to-all-people color model in their own code.

>
>
>
>
>

Here are just a few of the advantages of using TVIMAGE or IMGDISP:

1. Don't have to worry what color mode you are in, ever. They do
the *right* thing to get color images correct. They can tell
the difference between a Windows and UNIX machine.

For those of us with our own display code, can you summarize *how*
they do the right thing? For instance, if you have an 8-bit display,
where you're forced to use color tables, how can they anticipate how
many "system" colors a program may end up needing?

>
>

8. Works correctly on your display (8-bit or 24-bit) and in
all other graphics devices, too, including PostScript.

Page 1 of 3 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=23566&goto=51025#msg_51025
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=51025
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

9. Image "positioning and sizing" is done the same way no matter
if you are displaying your image on the display or in PostScript.
No more worry about XSIZE and YSIZE keywords!

Here are a few of the advantages of using FSC_COLOR:

1. You have a palette of 104 "named" colors, including all your
system colors. If you don't like the ones | provide, FSC_COLOR
can read a color file with your own choices.

Do see your color selection, type this:
IDL> color = FSC_COLOR(/Select)

2. FSC_COLOR works in a color model independent way. If you are
on an 8-bit device, FSC_COLOR loads the color in the color table
(you can tell it where or it will choose a location) and it will
return the location (index). If you are on a 24-bit device,
FSC_COLOR will do the 'fe458f'xL thing for you, not bother to
load a color, and you will get the SAME COLOR you get on an
8-bit device. No ugly code to puzzle over. The following
code works on your display and in PostScript without caring
what color model you are using. Plus, you can read it and
have a good idea of what colors you SHOULD be seeing!

VVVVVVVVVVVVVVVVVVVYVYVYVYVYVYV

Does the postscript device demand color-table style colors? That to me
would be a big drawback of decomposed color (unless you consistently use
FSC_COLOR/etc.).

While I'm thinking about it, get TVREAD, too. That is the counterpart to
TVIMAGE. What TVIMAGE does to get image ON your display, TVREAD does to
get them OFF your display and into PNG, JPEG, TIFF, and BMP files. No

more having to worry about what color model you are using and whether

you are on a Windows or UNIX machine (they handle colors differently).
TVREAD also works properly with 8-bit devices, such as the Z-buffer.

Bottom line. Don't worry about what color model you are using. Set
yourself up in color decomposed mode, use the proper tools to work in
that mode, put your feet up, and never think about it again. Problem
solved! :-)

VVVVVVVVYVYVYV

That's a good approach for interactive users on the command line, but
doesn't really constitute a complete solution for applications, which
may need to optimize color usage for various types of data. If the
actual code every time you want to draw a plot element on top of some
image is something like:

Page 2 of 3 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

device,get_decomposed=gd
device,/decomposed
plot,x,y,COLOR="fe458f'x
device,decomposed=gd

not only is this inefficient (taking about 5ms extra for the decompose
fiddling -- not so bad, what if code which is called 100's of times
after a motion event?), but it's not maintainable either. Here's my
ideal scenario:

1. I can use all 256 colors for colormap drawing of images.

2. | can use any additional color as 'ffaabb’x.

3. Will degrade gracefully in 8bit color.

4. Won't require elaborate setup and takedown of the color space
everytime | want to put something to screen.

| think that last point is what has kept me in color-table land for so

long. | know the combo of TVIMAGE/FSC_COLOR does this for you, but
I'm looking for the secret behind the sauce.

> P.S. By the way, an image object that displays itself with TVIMAGE and

> contains its own color table can display itself correctly anywhere and

> anytime. You don't even have to remember to load the colors anymore! :-)

Hmmm... is that because TVIMAGE keeps track of it for you?

JD

Page 3 of 3 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

