
Subject: Re: Random selection
Posted by JD Smith on Mon, 13 Nov 2006 18:46:08 GMT
View Forum Message <> Reply to Message

On Sun, 12 Nov 2006 05:07:19 -0800, greg michael wrote:

>  I'm not sure doubles are going to help - you'll get the same problem at
>  3 digits. And if you use the sort method, it doesn't really matter if
>  you get two the same - they'll still map to unique indices.

If you only want to pick 10 random elements from a list 100,000 long,
it's very inefficient to generate a set of 100,000 random numbers, sort
them all, and then take the first 10 indices.  There are all sorts of
iterative higher-order algorithms for selection without replacement, but
they don't match to IDL well.  One simple trick would be to start by
generating M random numbers, check for duplicates, and generate M-n more,
accumulating until you have enough.

M=10
len=100000L
inds=lonarr(n,/NOZERO)
n=M
while n gt 0 do begin 
    inds[M-n]=long(randomu(sd,n)*len)
    inds=inds[sort(inds)]
    u=uniq(inds)
    n=M-n_elements(u)
    inds[0]=inds[u]
end 

For this case, the speedup is immense, on average about 3500x faster.
What about a case with more duplicates likely?  How about len=100000,
M=25000?

Sort All randoms:             0.13349121
Brute force replacement:      0.091892505

Still about 1.5x faster.  

Obviously, if you wanted len-1 random indices, this won't scale, but in
that case, you could just invert the problem, choose the random indices
to be *discarded*, and use HISTOGRAM to generate the "real" list.
Here's a general function which does this for you.

function random_indices, len, n_in
  swap=n_in gt len/2
  if swap then n=len-n_in else n=n_in
  inds=lonarr(n,/NOZERO)

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=23621&goto=51324#msg_51324
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=51324
http://idlcoyote.com/comp.lang.idl-pvwave/index.php


  M=n
  while n gt 0 do begin 
     inds[M-n]=long(randomu(sd,n)*len)
     inds=inds[sort(inds)]
     u=uniq(inds)
     n=M-n_elements(u)
     inds[0]=inds[u]
  endwhile 
  
  if swap then inds=where(histogram(inds,MIN=0,MAX=len-1) eq 0)
  return,inds
end

It is outperformed by the simple sort method:

   r=randomu(sd,len)
   inds=(sort(r))[0:M-1]

only when M is close to len/2.  For example, I found that selecting from
length 100000 fewer than 30000 or more than 70000 elements favored
RANDOM_INDICES.  At worst case (M=len/2), it's roughly 3x slower.  The
RANDOM_INDICES method also returns the indices in sorted order (which
you may or may not care about).  You could obviously also make a hybrid
approach which switches from one method to the other for 

 abs(M-len/2) lt len/5

or so, but the tuning would be machine-specific.

JD

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

