
Subject: Re: Interesting Rant
Posted by Jeff Hester on Sat, 18 Nov 2006 21:42:44 GMT
View Forum Message <> Reply to Message

There is an interesting generational aspect to this discussion.  I grew 
up during a fairly narrow window of time when data analysis (and science 
more generally) was becoming more and more computerized, but before 
specialized software had become available.  During that time one *had* 
to just write the code yourself, whether it was data I/O, array 
manipulations, numerical code, or even primitives that allowed you to 
talk to an image display device.

In that environment you had to be cognizant about everything from how 
information was stored at the bit level to the way memory was utilized 
to things like the efficiency differences between stepping through an 
array with *array++ as opposed to array[i], or the tradeoffs between 
efficiency and flexibility in data storage formats.  (I can't count the 
number of times as a graduate student or postdoc that I was handed a 
tape and told, "Get the data off of it," without so much as a suggestion 
as to what the format might be.)  You thought in terms of, "What would I 
like to do to/with my data, and how can I do it?"  And when you found 
that a door was shut, you didn't think twice before starting to look 
around for the nearest window.  Data processing and analysis meant 
getting your hands dirty.  Period.  Those of you who came of age in such 
an environment know what I mean.

As new tools came along, we were happy to learn to use them.  It was 
kind of a relief to not have to write *everything* yourself, and there 
is no way that one person can keep up with a whole world full of 
programmers.  But at the same time, we carry that early mindset with us. 
  When we use a tool we can't help but build a mental picture of what 
that tool must be doing internally.  We've got a pretty good guess about 
what is there inside the black box, and how it might go wrong.

It came as a shock to me when I realized the extent to which this 
mindset has vanished.  Don't get me wrong.  There are a lot of very good 
programmers coming up through the ranks.  But the majority of people who 
sit down in front of a data set these day begin with the the question, 
"What convenient tools has someone written for me, and which might be 
best to apply to these data?"  In other words, their thinking about 
problems tends to be heavily shaped by the parameters of their software 
environments.  A lot of those tools are exceedingly powerful and allow 
you to do great stuff, often very efficiently.  But a cage is still a 
cage, no matter how gilded.

Which arrives at the issue at hand.  While I have developed a number of 
"packages" in IDL, for the most part every data set that comes across my 
desk is unique.  Probably 75% of the code that I write is for the 

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4138
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=23635&goto=51434#msg_51434
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=51434
http://idlcoyote.com/comp.lang.idl-pvwave/index.php


immediate purpose, and may not see use again after that day, much less 
after the end of that project.  I include image and other data 
processing, numerical modeling, and data visualization in that category. 
  I tend to cut, paste, hack, modify, stick together with duct tape, and 
in general do whatever I need to in an effort to tease information from 
a data set.  Some of the code that I write is admittedly kind of ugly... 
but it shows me a lot of really interesting things in my data.

This is the kind of application that IDL was built for ("Interactive 
Data Language..."), and IDL remains at least for me a more productive 
environment than any other I have run across.  Is it the best 
programming language out there?  No.  Does it produce the prettiest 
plots with the spiffiest fonts?  No.  Do I use other tools?  Sure.  But 
when it comes time to get down and dirty with your data, IDL's 
combination of power and on-the-fly flexibility is hard to beat.

So when students complain, "I can't do that in Maple/Matlab/Whatever",
I chuckle, then point out that quite often those who are limited only by 
their imagination and creativity tend to win out over those who are 
limited by the flexibility of their software.  I then point them to an 
IDL tutorial.

BUT... as for personal pet peeves, it is the inefficiency of loops, 
hands down.  (I will now resist the temptation of telling stories about 
compiling C code and linking it into Forth kernels to do real-time 
instrument control or doing image processing on a PDP 11/55....)

Surviving to be a dinosaur sure beats hell out of the alternative...  ;-)

Cheers,
Jeff Hester

Professor and Dinosaur in Residence
School of Earth and Space Exploration
Arizona State University

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

