
Subject: Re: Arrays of Structures
Posted by JD Smith on Fri, 09 Feb 2007 20:51:50 GMT
View Forum Message <> Reply to Message

On Fri, 09 Feb 2007 02:13:56 -0800, Mick Brooks wrote:

> If I try, I get the following:
>
> IDL> struct=replicate({a:lindgen(100,100,100)},100)
> IDL> print,(m=memory(/HIGHWATER))/1024/1024.,"MB"
> 385.836MB
> IDL> val=struct[10].a[4]
> IDL> print,((n=memory(/HIGHWATER))-m)/1024/1024.,"MB Extra"
> -3.81445MB Extra
> IDL> val3=struct.a[10,4]
> IDL> print,(memory(/HIGHWATER)-n)/1024/1024.,"MB Extra"
> 0.00000MB Extra
> IDL> HELP, val, val3
> VAL LONG = 4
> VAL3 LONG = Array[100]
> IDL> PRINT, val3
> 410 [+ another 99 of the same]
>
> The problem case doesn't use any extra memory (great!), but it gives a
> different result (boo!).

I probably should have used a better example, that was confusing. The
reason val3 "works" is because "a", the field being de-referenced,
already has 3 dimensions. So it grabs the [10,4] element of all a's,
and then proceeds to thread that across all 100 structures in the
structure array, creating a new array in the process. Here's a better
example illustrating this issue:

IDL> val4=(struct.a)[10,4,1,1]
IDL> val5=struct[10].a[4,1,1]
IDL> print,val4,val5
 10410 10104
IDL> val6=struct.a[10,4,1,1]
% Subscript range values of the form low:high must be >= 0, < size, with low
 <= high: <No name>.

Here's the real issue: since "struct.a" doesn't exist as an array
anywhere in memory, but instead is a composite entity, it must be
formed anew by:

a) allocating a new array of enough memory to hold all of
 n_elements(struct) x size(a,/dimensions) values.
b) going through each structure in the structure array, and copying its

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=11909&goto=52580#msg_52580
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=52580
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 copy of "a" into the new array.

I agree the precedence table is misleading on this point. I do think
there is a reasonable argument that IDL should understand
struct.a[10,4,1,1] and not need to first create a 325MB array to
de-reference it. Here's an easy rule of thumb though: in order to
avoid the "new array creation" process described above, just attach
all indices as close as possible to the quantity they are indexing.
"10" goes with struct (we want the 10th struct). [4,1,1] goes with
"a" (we want element [4,1,1] of a).

JD

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

