Subject: Re: Arrays of Structures
Posted by Paul Van Delst[1] on Fri, 09 Feb 2007 16:01:24 GMT

View Forum Message <> Reply to Message

JD Smith wrote:

> On Thu, 08 Feb 2007 14:02:08 -0500, Paul van Delst wrote:

>

>> Mick Brooks wrote:

>

>> You know, I'm confused now too. Check out the precedence in the IDL help:

>

>> S0, you see that the the structure field dereference operator, ".", and the array

>> subscript operator, "[|" , have the same precedence. Operators with equal precedence are
>> evaluated from left to right.

>>

>> S0,

>>

>>  structs.a[23]
>>

>> means FIRST dereference the structure field (structs.a), THEN index the array ([23]). The
>> way | see it,

>>

>>  structs.a[23]
>> and

>>  (structs.a)[23]
>>

>> should be equivalent.

The problem is that structs.a is not an array until the ".a" part has been
applied. What if structs had been;

structs={a:indgen(25)}
what should structs.a[23] do then, and how should IDL know the difference.

Until IDL knows what shape "structs.a" will have, it cannot make any
informed decision about how to index it.

VvV VVVYVYVYVYVYV

How is it different from:

IDL> x=findgen(10,20)

IDL> help, x

X FLOAT = Array[10, 20]
IDL> help, x[23]

<Expression> FLOAT = 23.0000
IDL> help, (X)[23]

<Expression> FLOAT = 23.0000
?

Page 1 of 4 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4285
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=11909&goto=52581#msg_52581
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=52581
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Or
IDL> x=findgen(10,20,30)
IDL> help,x[1000]

<Expression> FLOAT = 1000.00
IDL> help,x[0,0,5]
<Expression> FLOAT = 1000.00

?

The reference [23] is being applied to an array. The rank of that array doesn't matter
since IDL allows you to reference multi-rank arrays with a single index (treating it as a
"flat" array).

If we have

IDL> structs=replicate({a:indgen(25)},10)

IDL> help, structs

STRUCTS STRUCT = -><Anonymous> Array[10]
IDL> help, structs.a

<Expression> INT = Array[25, 10]

Then, via the precedence rules,
IDL> help, structs.a[23]

should be equivalent to

IDL> help, structs[0].a[23]

> You might object, saying that

> |IDL should just evaluate that to begin with always, but think how

> expensive that is. Creating "structs.a" would cause a large temporary

> array to be created, only to finally index a single element.

Yes, | agree that is bad but it is an implementation detail. The precedence rules seem
quite clear that this should work. Please correct me if my interpretation of the rules is
wrong.

Maybe it was disallowed in general so they (RSI) wouldn't have to special case structures
containing pointers,

IDL> structs=replicate({a:ptr_new(/allocate_heap)},10)
IDL> *structs[0].a=findgen(20)

IDL> *structs[1].a=indgen(74)

IDL> *structs[2].a=dindgen(3)

IDL> *structs[4].a=sindgen(13)

IDL> help, *structs.a[4]

Page 2 of 4 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

% Subscript range values of the form low:high must be >= 0, < size, with low <= high: <No
name>.
% Execution halted at: $SMAIN$

Although, again, the rules indicate that the pointer dereference operator "*" has a lower
precedence that either "." or "[]" so | would contend that even the above

IDL> help, *structs.a[4]

% Subscript range values of the form low:high must be >= 0, < size, with low <= high: <No
name>.

% Execution halted at: SMAIN$

is valid and that parentheses should not be required,

IDL> help, *(structs.a)[4]
<PtrHeapVarl> STRING = Array[13]

| also think the case of
IDL> help, *structs.a[23]

is also well defined.... it's invalid (at least it is until IDL allows arrays composed of
different different objects).

| reckon these sorts of special cases are why the more general case is disallowed. (But
what the hell do | know! :0)

Compare the
memory usage of the following:

IDL> struct=replicate({a:lindgen(100,100,100)},100)

IDL> print,(m=memory(/HIGHWATER))/1024/1024.,"MB"
382.472MB

IDL> val=struct[10].a[4]

IDL> print,(memory(/HIGHWATER)-m)/1024/1024.,"MB extra"
0.00000MB extra

IDL> val2=(struct.a)[10,4]

IDL> print,(memory(/HIGHWATER)-m)/1024/1024.,"MB extra"
381.470MB extra

So the latter method first creates a temporary variable of size
100,100,100,100, and then pulls a single element out of it. Not
exactly good form.

VVVVVVVVYVYVVYVYVYVYVYV

No, | agree, not good. But the precedence rules for operators not being followed isn't too
crash hot either. :0)

Page 3 of 4 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

cheers,

paulv
Paul van Delst Ride lots.
CIMSS @ NOAA/NCEP/EMC Eddy Merckx

Page 4 of 4 ---- CGenerated from conp. |l ang. i dl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

