Subject: Re: Optimizing a lookup table
Posted by Brian Larsen on Sat, 03 Mar 2007 17:40:20 GMT

View Forum Message <> Reply to Message

IP, :)

| always tend to lean toward the disk read as then you don't have any
unwieldy issues with size and doubles and you can do structures. |
find that using a good solution and just using it forever is easiest

on my simple brain.

While it certainly won't work in all situations | often solve it this
way.

if n_elements(lookup) eq O then restore, 'file.sav'

for i=0l, big-1 do begin

;; do something cool,

cool = my_function(params, lookup)
endfor

This way you have to rewrite my_function to accept the lookup table as
a param but you only have to do the read once, which is good because
disk access is slow.

This is mainly my bias for almost never using system vars or common
blocks, mainly because | hate having namespace issues that | wasn't
expecting and it always seems to happen to me.

Brian A. Larsen

Dept. of Physics

Space Science and Engineering Lab (SSEL)
Montana State University - Bozeman
Bozeman, MT 59717

On Mar 2, 6:15 pm, ianpaul.free...@gmail.com wrote:

> | would like to write a function that uses a look-up table. Now the

> easiest (coding-wise), is to just save the look-up table and have the
> function restore it. However, | plan to be calling this function in a

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5775
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=24153&goto=52804#msg_52804
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=52804
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

VVVVVVVVVVVVVVVVVVVYVYVYVYVYVYV

loop, so this would result in numerous unnecessary disk-reads.
Anyway, what is the most efficient way to get a lookup table into an
IDL function?

My thoughts so far:

1) Just print the look-up table to the screen, copy/paste into the
function and add some brackets and commas, presto, variable is in the
function and will stay loaded as long as the function is compiled.

This will work for my present problem, but would be unwieldy for

really large look-up tables and | worry about double-precision getting
truncated on the print.

2) have a procedure that reads in the table and puts it in a common
block, then just start my function with an if-statement to see if the
common block exists and if not, call the reading procedure. My
guestion here is, how can | check to see if a common block has already
been created? | know I could call the common block maker outside the
loop, but that seems lame and makes it more complicated if | want to
share the code.

Unless someone comes up with something really witty, I'll just use
option 1. Just seems like this would be a common problem that
someone's solved before.

cheers,
IP Freeley

Page 2 of 2 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

