
Subject: Re: Sky Falling, etc. : Array substitution + addition with plus-equal (+=)
Posted by JD Smith on Tue, 13 Mar 2007 17:46:24 GMT
View Forum Message <> Reply to Message

On Mon, 12 Mar 2007 14:17:57 -0700, Ed Hyer wrote:

> Tentatively filed under "The Sky Is Falling!," and I hope it will be
> resolved in the same fashion.

> Here is another case, with results somewhat different
> IDL> test=fltarr(2,2,4)
> IDL> testadd=fltarr(2,2,2)
> IDL> testadd[0,0,*]=1
> IDL> print,total(test),total(testadd)
> 0.00000 2.00000
> IDL> test[0,0,1] += testadd
> IDL> print,total(test),total(testadd)
> 2.00000 2.00000
> IDL> print,test
> 0.00000 0.00000
> 0.00000 0.00000
>
> 1.00000 0.00000
> 0.00000 0.00000
>
> 1.00000 0.00000
> 0.00000 0.00000
>
> 0.00000 0.00000
> 0.00000 0.00000 ; So far, so good
> IDL> test[0,0,1] += testadd ; Now, let's add again
> IDL> print,total(test),total(testadd)
> 10.0000 2.00000 ; Pardon the
> expression, WTF?
> IDL> print,test
> 0.00000 0.00000
> 0.00000 0.00000
>
> 2.00000 1.00000
> 1.00000 1.00000
>
> 2.00000 1.00000
> 1.00000 1.00000
>
> 0.00000 0.00000
> 0.00000 0.00000 ; Not even JD Smith
> expected _that_.

Page 1 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=24193&goto=53017#msg_53017
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=53017
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Sure I did. In the first case, you are adding test[0,0,1], i.e. "0",
to 'testadd', then setting the entire resulting 2x2x2 array en masse
into 'test' at offset [0,0,1]. In the second case, you are adding
test[0,0,1], i.e. "1", to 'testadd', resulting in:

 2 1
 1 1

 2 1
 1 1

and then setting this resulting 2x2x2 array into 'test' at offset
[0,0,1].

What's surprising and perhaps nonintuitive here is the ambiguity
between a single array index on the LHS of an assignment, and a single
array index on the RHS. When on the RHS, an array element is treated
simply as a scalar, and so is threaded across every element of any
other arrays in the RHS calculation. When on the LHS, a single array
index is treated as an *offset* into an array, into which to set the
RHS array if, and only if, it "fits". How do you determine if it
fits? Think of cutting out different sized rectangles of colored
paper and inserting one into the other at some arbitrary offset. You
can easily arrange for it *not* to fit (in the geometric sense):

IDL> testadd=fltarr(2,3,2)
IDL> test[0,0,1]+=testadd
% Out of range subscript encountered: TEST.
% Execution halted at: $MAIN$

Of these two behaviors (array element as scalar vs. array element as
offset position for setting new array), 'foo[x,y,z]+=' actually
invokes *both*, since it expands to 'f[x,y,z] = foo[x,y,z] + ',
i.e. an indexed array on both sides of the assignment.

Also note that there is a bit of an "escape clause" for the "does it
fit" geometric argument, in the sense that a 1D vector is treated as a
simple block of memory to copy in linearly, index by index, if the LHS
indexing is single element, e.g.:

IDL> testadd=reform(testadd,product(size(testadd,/DIMENSIONS)))
IDL> testadd[*]=1
IDL> test[0]+=testadd

Here we've added 12 elements in memory order into test. This is
different from the notionally equivalent:

IDL> test[0,0,0]+=testadd

Page 2 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

% Out of range subscript encountered: TEST.
% Execution halted at: $MAIN$

As you see, as soon as you specify a multi-dimensional index on the
LHS or multi-dimensional array on the RHS, the geometry argument comes
into play. In either of these cases, it will check for a "fit", and
then thread along the specified dimension(s) in the LHS index until it
runs out of room:

IDL> test=fltarr(2,2,4)
IDL> testadd=findgen(2,2,4)+100
IDL> test[0]+=testadd
IDL> print,test
 100.000 101.000
 0.00000 0.00000

 0.00000 0.00000
 0.00000 0.00000

 0.00000 0.00000
 0.00000 0.00000

 0.00000 0.00000
 0.00000 0.00000

Notice that data along dimensions higher than specified in the LHS
index are simply dropped. Note also that it's *not* sufficient for
the array to "fit" just along the considered dimension(s). It must
fit in its entirety, in *all* dimensions:

IDL> test=fltarr(2,2,4)
IDL> testadd=findgen(2,2,5)+100
IDL> test[0]+=testadd
% Out of range subscript encountered: TEST.
% Execution halted at: $MAIN$

This error occurs even though, as we saw above, it was only going to
assign the first two elements (100 and 101). How about two dimensions
indexed on the LHS?

IDL> test=fltarr(2,2,4)
IDL> testadd=findgen(2,2,4)+100
IDL> test[0,0]+=testadd
IDL> print,test
 100.000 101.000
 102.000 103.000

 0.00000 0.00000

Page 3 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 0.00000 0.00000

 0.00000 0.00000
 0.00000 0.00000

 0.00000 0.00000
 0.00000 0.00000

and so on:

IDL> test=fltarr(2,2,4)
IDL> test[0,0,0]+=testadd
IDL> print,test
 100.000 101.000
 102.000 103.000

 104.000 105.000
 106.000 107.000

 108.000 109.000
 110.000 111.000

 112.000 113.000
 114.000 115.000

You can even add more fake "shallow" trailing dimensions if you are so
inclined, for instance if you don't know in advance what the number of
dimensions will be, but know you want to insert the RHS array in a
specific position:

IDL> testadd=findgen(2,2,2)+100
IDL> test=fltarr(3,2,4)
IDL> test[0,0,1,0,0,0,0,0]+=testadd
IDL> test=fltarr(3,2,3,2)
IDL> test[0,0,1,0,0,0,0,0]+=testadd

One additional point is worth mentioning: when setting large arrays, the
"offset" method of specifying a single index on the LHS is much faster
than the '*' method of building the full index list to match up the
dimensions of left and right-hand side arrays:

IDL> testadd=randomu(sd,100,100,100,5)
IDL> test=fltarr(200,100,100,10)
IDL> t=systime(1) & test[100,0,0,0]=testadd & print,systime(1)-t
 0.067754984
IDL> t=systime(1) & test[100:*,*,*,0:4]=testadd & print,systime(1)-t
 0.21291494

Page 4 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Not only is it a simpler notation, it avoid the construction of large,
memory-hogging index arrays that the "*" method requires, and is thus
usually much faster. This is why you may have seen lots of assignment
of arrays to single array indices in optimized code.

JD

Page 5 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

