
Subject: Re: Big arrays, reducing data
Posted by Jean H. on Wed, 21 Mar 2007 21:26:25 GMT
View Forum Message <> Reply to Message

Eric Hudson wrote:
> Hi,
>
> I have what I hope is an easy question and then probably a hard one.
>
> 1) I need to make some big arrays (ideally 16000^2 elements or more)
> but find I often get "unable to allocate memory" errors. Is there
> some way of determining (at run time) the largest array that I can
> make? In C, for example, I'd try to allocate the memory and check for
> whether it was allocated, then cut the array size if it wasn't. Is
> there an equivalent technique in IDL?

There is the memTest procedure made by ITTVIS that displays the 10
biggest array that you can store. I have modified this procedure so you
can retrieve a) the size of the biggest array you can save and b) the
TOTAL available memory.

Here is a copy of the code... note that I just made small modification
to the header as I did not intend to distribute this code.
The calling sequence is:
biggestArrayInBits = availableMemory()
or biggestArrayInBits = availableMemory(TotalAvailableMemoryInBits)

Hope that helps!
Jean

; function: availableMemory (previously: Procedure: MEMTEST)
;
;
;http://www.rsinc.com/services/techtip.asp?ttid=3441
;
; Syntax: memtest
;
; Purpose:
; This procedure was designed primarily to test the impacts of Windows OS
; memory fragmentation behavior on IDL memory allocation.
;
; The procedure attempts to allocate 10 coexisting memory blocks of 2 GB
size.
; If there is not enough memory to accomplish this, it allocates the 10
; largest coexisting blocks that it can. It stops allocating new memory
blocks
; either:
;

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5815
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=24244&goto=53091#msg_53091
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=53091
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; - when it has allocated full 10 blocks.
; - when it cannot allocate any additional block of more than 1 MB in size
; (i.e. when the application has run out of available memory).
;
; Postcondition:
; This program outputs a log of its successful allocations that may look
like:
;
; Memory block # 1: 1168 Mb (total: 1168 Mb)
; Memory block # 2: 206 Mb (total: 1374 Mb)
; Memory block # 3: 143 Mb (total: 1517 Mb)
; Memory block # 4: 118 Mb (total: 1635 Mb)
; Memory block # 5: 79 Mb (total: 1714 Mb)
; Memory block # 6: 54 Mb (total: 1768 Mb)
; Memory block # 7: 41 Mb (total: 1809 Mb)
; Memory block # 8: 39 Mb (total: 1848 Mb)
; Memory block # 9: 31 Mb (total: 1879 Mb)
; Memory block #10: 16 Mb (total: 1895 Mb)
;
; (Note that the output may have fewer than 10 blocks of memory)
;
;
;
;MODIFICATION:
;February 2007:	Jean-Gabriel Hasbani, jghasban@ucalgary.ca
;This is now a function that returns the size, in MB, of the biggest
array the memory could hold.
;If specified by the argument, the total availalbe memory can also be
saved.
;The showAll keywords allows one to print all the availble memory that
can be used by the biggest arrays
;
; maxArraySize = availableMemory(totalSize, /showAll)
;-
function availableMemory, totalSize, showAll = showAll
 compile_opt idl2 ; set default integers to 32-bit and enforce [] for
indexing

	biggestArray = 0ull

 MB = 2^20
 currentBlockSize = MB * 2047 ; 2 GB
 maxIterations = 10 ; Max loop iterations
 memPtrs = ptrarr(maxIterations)
 memBlockSizes = ulonarr(maxIterations)

 for i=0, maxIterations-1 do begin
 ; Error handler

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 catch, err

 ; Sepcifically designed for "Failure to allocate memory..." error
 if (err ne 0) then begin
 currentBlockSize = currentBlockSize - MB ; ...try 1 MB
smaller allocation
 if (currentBlockSize lt MB) then break ; Give up, if
currentBlockSize < 1 MB
 endif

 ; This 'wait' enables Ctrl-Break to interrupt if necessary (Windows).
 wait, 0.0001

 ; Allocate memory (if possible)
 memPtrs[i] = ptr_new(bytarr(currentBlockSize, /nozero), /no_copy)
 memBlockSizes[i] = currentBlockSize ; Store the latest successful
allocation size
 if i eq 0 then biggestArray = currentBlockSize * 8ull;Bits
;currentBlockSize ;byte ;ishft(currentBlockSize, -20) ;Mb

	; Print the current allocated block size and the running total, in Mb
	If keyword_set(showAll) then $
	 print, format='(%"Memory block #%2d: %4d Mb (total: %4d Mb)")', $
 	 i + 1, ishft(currentBlockSize, -20),
ishft(ulong(total(memBlockSizes)), -20)
 endfor

 ptr_free,memPtrs

 	totalSize = ulong64(total(memBlockSizes)* 8ull) ;bits
;ishft(ulong(total(memBlockSizes)), -20) ;Mb

	return, biggestArray
end

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

