
Subject: Re: simple question (I hope)
Posted by JD Smith on Fri, 30 Mar 2007 17:51:02 GMT
View Forum Message <> Reply to Message

On Fri, 30 Mar 2007 10:00:25 -0700, David Fanning wrote:

> Ryan. writes:
>
>> I have one more question about it, but it is more about how IDL works
>> than the REMOVE routine.
>> Say for example I do this:
>>
>> group_array = huge_array[groupidx]
>> indices_2_remove_in_group_array = [...]
>>
>> And If I call the REMOVE routine
>> REMOVE, indices_2_remove_in_group_array, huge_array[groupidx]
>>
>> Will this call remove the elements from the *huge_array* or will it
>> remove them from a temporary array created when calling the REMOVE
>> routine?
>>
>> I know that IDL passes references as arguments, but in this will it
>> actually remove the elements from the original *huge_array* or not.
>
> Actually, IDL passes *variables* by reference. Everything
> else, including expressions like "huge_array[groupidx]", it
> passes by value. So if you called REMOVE like this, you
> would get no error messages, since it would work, but
> you wouldn't know about it. :-)

This isn't quite correct. Everything, and I mean everything, in IDL is
passed by reference. However, when IDL encounters a statement like
`array[x]', or `struct.y', or total(array), it first creates a temporary
variable to hold the results of the array indexing or structure
de-reference, or function call. Other than the fact that this variable
isn't accessible externally, it is just a regular old IDL variable (does
this remind you of heap variables in the pointer tutorial?). This
temporary variable is passed, just like all other variables in IDL, *by
reference* into a calling procedure, e.g.:

 mypro, array[x] ---> mypro, some_internal_idl_temp_var1234

Since you can't access that temporary variable explicitly, this is
effectively the same as pass by value. You can now set
some_internal_idl_temp_var1234 to your heart's content, but you'll never
be able to recover the special value you put there:

Page 1 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=24319&goto=53276#msg_53276
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=53276
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

pro mypro, arr
 arr[0]=42
end

IDL> a=randomu(sd,100,1000,100)
IDL> mypro, a[0:800,*,*]
IDL> help,a
A FLOAT = Array[1000, 1000, 100]
IDL> print,a[0]
 0.776156 ; wherefore art though, 42?

The one difference which makes this distinction more than pedantic is
that true pass by value is very inefficient for large arrays. In a
pass-by-value scheme, all of that data (801x1000x100) would be copied
via the stack into the local address space of the routine MYPRO. It may
sound like a subtle difference, but it does represent a real gain in
efficiency, in particular when the temporary variable has a life outside
the called routine. Eventually, all temporary variables are harvested,
and their memory freed. So while you can't ever get at them yourself,
they do offer advantages.

JD

Page 2 of 2 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

